Update REA, REINFORCE, and RANDOM
This commit is contained in:
		| @@ -4,6 +4,8 @@ | |||||||
| # Random Search for Hyper-Parameter Optimization, JMLR 2012 ################## | # Random Search for Hyper-Parameter Optimization, JMLR 2012 ################## | ||||||
| ############################################################################## | ############################################################################## | ||||||
| # python ./exps/algos-v2/random_wo_share.py --dataset cifar10 --search_space tss | # python ./exps/algos-v2/random_wo_share.py --dataset cifar10 --search_space tss | ||||||
|  | # python ./exps/algos-v2/random_wo_share.py --dataset cifar100 --search_space tss | ||||||
|  | # python ./exps/algos-v2/random_wo_share.py --dataset ImageNet16-120 --search_space tss | ||||||
| ############################################################################## | ############################################################################## | ||||||
| import os, sys, time, glob, random, argparse | import os, sys, time, glob, random, argparse | ||||||
| import numpy as np, collections | import numpy as np, collections | ||||||
| @@ -20,7 +22,7 @@ from utils        import get_model_infos, obtain_accuracy | |||||||
| from log_utils    import AverageMeter, time_string, convert_secs2time | from log_utils    import AverageMeter, time_string, convert_secs2time | ||||||
| from models       import get_search_spaces | from models       import get_search_spaces | ||||||
| from nas_201_api  import NASBench201API, NASBench301API | from nas_201_api  import NASBench201API, NASBench301API | ||||||
| from .regularized_ea import random_topology_func, random_size_func | from regularized_ea import random_topology_func, random_size_func | ||||||
|  |  | ||||||
|  |  | ||||||
| def main(xargs, api): | def main(xargs, api): | ||||||
| @@ -28,16 +30,18 @@ def main(xargs, api): | |||||||
|   prepare_seed(xargs.rand_seed) |   prepare_seed(xargs.rand_seed) | ||||||
|   logger = prepare_logger(args) |   logger = prepare_logger(args) | ||||||
|  |  | ||||||
|  |   logger.log('{:} use api : {:}'.format(time_string(), api)) | ||||||
|  |   api.reset_time() | ||||||
|  |  | ||||||
|   search_space = get_search_spaces(xargs.search_space, 'nas-bench-301') |   search_space = get_search_spaces(xargs.search_space, 'nas-bench-301') | ||||||
|   if xargs.search_space == 'tss': |   if xargs.search_space == 'tss': | ||||||
|     random_arch = random_topology_func(search_space) |     random_arch = random_topology_func(search_space) | ||||||
|   else: |   else: | ||||||
|     random_arch = random_size_func(search_space) |     random_arch = random_size_func(search_space) | ||||||
|  |  | ||||||
|   x_start_time = time.time() |  | ||||||
|   logger.log('{:} use nas_bench : {:}'.format(time_string(), nas_bench)) |  | ||||||
|   best_arch, best_acc, total_time_cost, history = None, -1, [], [] |   best_arch, best_acc, total_time_cost, history = None, -1, [], [] | ||||||
|   while total_time_cost[-1] < xargs.time_budget: |   current_best_index = [] | ||||||
|  |   while len(total_time_cost) == 0 or total_time_cost[-1] < xargs.time_budget: | ||||||
|     arch = random_arch() |     arch = random_arch() | ||||||
|     accuracy, _, _, total_cost = api.simulate_train_eval(arch, xargs.dataset, '12') |     accuracy, _, _, total_cost = api.simulate_train_eval(arch, xargs.dataset, '12') | ||||||
|     total_time_cost.append(total_cost) |     total_time_cost.append(total_cost) | ||||||
| @@ -45,13 +49,14 @@ def main(xargs, api): | |||||||
|     if best_arch is None or best_acc < accuracy: |     if best_arch is None or best_acc < accuracy: | ||||||
|       best_acc, best_arch = accuracy, arch |       best_acc, best_arch = accuracy, arch | ||||||
|     logger.log('[{:03d}] : {:} : accuracy = {:.2f}%'.format(len(history), arch, accuracy)) |     logger.log('[{:03d}] : {:} : accuracy = {:.2f}%'.format(len(history), arch, accuracy)) | ||||||
|   logger.log('{:} best arch is {:}, accuracy = {:.2f}%, visit {:} archs with {:.1f} s (real-cost = {:.3f} s).'.format(time_string(), best_arch, best_acc, len(history), total_time_cost, time.time()-x_start_time)) |     current_best_index.append(api.query_index_by_arch(best_arch)) | ||||||
|  |   logger.log('{:} best arch is {:}, accuracy = {:.2f}%, visit {:} archs with {:.1f} s.'.format(time_string(), best_arch, best_acc, len(history), total_time_cost[-1])) | ||||||
|    |    | ||||||
|   info = api.query_info_str_by_arch(best_arch, '200' if xargs.search_space == 'tss' else '90') |   info = api.query_info_str_by_arch(best_arch, '200' if xargs.search_space == 'tss' else '90') | ||||||
|   logger.log('{:}'.format(info)) |   logger.log('{:}'.format(info)) | ||||||
|   logger.log('-'*100) |   logger.log('-'*100) | ||||||
|   logger.close() |   logger.close() | ||||||
|   return logger.log_dir, total_time_cost, history |   return logger.log_dir, current_best_index, total_time_cost | ||||||
|  |  | ||||||
|  |  | ||||||
| if __name__ == '__main__': | if __name__ == '__main__': | ||||||
| @@ -62,7 +67,7 @@ if __name__ == '__main__': | |||||||
|   parser.add_argument('--time_budget',        type=int,   default=20000, help='The total time cost budge for searching (in seconds).') |   parser.add_argument('--time_budget',        type=int,   default=20000, help='The total time cost budge for searching (in seconds).') | ||||||
|   parser.add_argument('--loops_if_rand',      type=int,   default=500,   help='The total runs for evaluation.') |   parser.add_argument('--loops_if_rand',      type=int,   default=500,   help='The total runs for evaluation.') | ||||||
|   # log |   # log | ||||||
|   parser.add_argument('--save_dir',           type=str,   help='Folder to save checkpoints and log.') |   parser.add_argument('--save_dir',           type=str,   default='./output/search', help='Folder to save checkpoints and log.') | ||||||
|   parser.add_argument('--rand_seed',          type=int,   default=-1,    help='manual seed') |   parser.add_argument('--rand_seed',          type=int,   default=-1,    help='manual seed') | ||||||
|   args = parser.parse_args() |   args = parser.parse_args() | ||||||
|    |    | ||||||
| @@ -77,7 +82,7 @@ if __name__ == '__main__': | |||||||
|   print('save-dir : {:}'.format(args.save_dir)) |   print('save-dir : {:}'.format(args.save_dir)) | ||||||
|  |  | ||||||
|   if args.rand_seed < 0: |   if args.rand_seed < 0: | ||||||
|     save_dir, all_info = None, {} |     save_dir, all_info = None, collections.OrderedDict() | ||||||
|     for i in range(args.loops_if_rand): |     for i in range(args.loops_if_rand): | ||||||
|       print ('{:} : {:03d}/{:03d}'.format(time_string(), i, args.loops_if_rand)) |       print ('{:} : {:03d}/{:03d}'.format(time_string(), i, args.loops_if_rand)) | ||||||
|       args.rand_seed = random.randint(1, 100000) |       args.rand_seed = random.randint(1, 100000) | ||||||
|   | |||||||
| @@ -155,7 +155,7 @@ def regularized_evolution(cycles, population_size, sample_size, time_budget, ran | |||||||
|   population = collections.deque() |   population = collections.deque() | ||||||
|   api.reset_time() |   api.reset_time() | ||||||
|   history, total_time_cost = [], []  # Not used by the algorithm, only used to report results. |   history, total_time_cost = [], []  # Not used by the algorithm, only used to report results. | ||||||
|  |   current_best_index = [] | ||||||
|   # Initialize the population with random models. |   # Initialize the population with random models. | ||||||
|   while len(population) < population_size: |   while len(population) < population_size: | ||||||
|     model = Model() |     model = Model() | ||||||
| @@ -163,8 +163,9 @@ def regularized_evolution(cycles, population_size, sample_size, time_budget, ran | |||||||
|     model.accuracy, _, _, total_cost = api.simulate_train_eval(model.arch, dataset, '12') |     model.accuracy, _, _, total_cost = api.simulate_train_eval(model.arch, dataset, '12') | ||||||
|     # Append the info |     # Append the info | ||||||
|     population.append(model) |     population.append(model) | ||||||
|     history.append(model) |     history.append((model.accuracy, model.arch)) | ||||||
|     total_time_cost.append(total_cost) |     total_time_cost.append(total_cost) | ||||||
|  |     current_best_index.append(api.query_index_by_arch(max(history, key=lambda x: x[0])[1])) | ||||||
|  |  | ||||||
|   # Carry out evolution in cycles. Each cycle produces a model and removes another. |   # Carry out evolution in cycles. Each cycle produces a model and removes another. | ||||||
|   while total_time_cost[-1] < time_budget: |   while total_time_cost[-1] < time_budget: | ||||||
| @@ -183,15 +184,16 @@ def regularized_evolution(cycles, population_size, sample_size, time_budget, ran | |||||||
|     # Create the child model and store it. |     # Create the child model and store it. | ||||||
|     child = Model() |     child = Model() | ||||||
|     child.arch = mutate_arch(parent.arch) |     child.arch = mutate_arch(parent.arch) | ||||||
|     child.accuracy, _, _, total_cost = api.simulate_train_eval(model.arch, dataset, '12') |     child.accuracy, _, _, total_cost = api.simulate_train_eval(child.arch, dataset, '12') | ||||||
|     # Append the info |     # Append the info | ||||||
|     population.append(child) |     population.append(child) | ||||||
|     history.append(child) |     history.append((child.accuracy, child.arch)) | ||||||
|  |     current_best_index.append(api.query_index_by_arch(max(history, key=lambda x: x[0])[1])) | ||||||
|     total_time_cost.append(total_cost) |     total_time_cost.append(total_cost) | ||||||
|  |  | ||||||
|     # Remove the oldest model. |     # Remove the oldest model. | ||||||
|     population.popleft() |     population.popleft() | ||||||
|   return history, total_time_cost |   return history, current_best_index, total_time_cost | ||||||
|  |  | ||||||
|  |  | ||||||
| def main(xargs, api): | def main(xargs, api): | ||||||
| @@ -210,7 +212,7 @@ def main(xargs, api): | |||||||
|   x_start_time = time.time() |   x_start_time = time.time() | ||||||
|   logger.log('{:} use api : {:}'.format(time_string(), api)) |   logger.log('{:} use api : {:}'.format(time_string(), api)) | ||||||
|   logger.log('-'*30 + ' start searching with the time budget of {:} s'.format(xargs.time_budget)) |   logger.log('-'*30 + ' start searching with the time budget of {:} s'.format(xargs.time_budget)) | ||||||
|   history, total_times = regularized_evolution(xargs.ea_cycles, xargs.ea_population, xargs.ea_sample_size, xargs.time_budget, random_arch, mutate_arch, api, xargs.dataset) |   history, current_best_index, total_times = regularized_evolution(xargs.ea_cycles, xargs.ea_population, xargs.ea_sample_size, xargs.time_budget, random_arch, mutate_arch, api, xargs.dataset) | ||||||
|   logger.log('{:} regularized_evolution finish with history of {:} arch with {:.1f} s (real-cost={:.2f} s).'.format(time_string(), len(history), total_times[-1], time.time()-x_start_time)) |   logger.log('{:} regularized_evolution finish with history of {:} arch with {:.1f} s (real-cost={:.2f} s).'.format(time_string(), len(history), total_times[-1], time.time()-x_start_time)) | ||||||
|   best_arch = max(history, key=lambda i: i.accuracy) |   best_arch = max(history, key=lambda i: i.accuracy) | ||||||
|   best_arch = best_arch.arch |   best_arch = best_arch.arch | ||||||
| @@ -220,7 +222,7 @@ def main(xargs, api): | |||||||
|   logger.log('{:}'.format(info)) |   logger.log('{:}'.format(info)) | ||||||
|   logger.log('-'*100) |   logger.log('-'*100) | ||||||
|   logger.close() |   logger.close() | ||||||
|   return logger.log_dir, [api.query_index_by_arch(x.arch) for x in history], total_times |   return logger.log_dir, current_best_index, total_times | ||||||
|  |  | ||||||
|  |  | ||||||
| if __name__ == '__main__': | if __name__ == '__main__': | ||||||
| @@ -249,7 +251,7 @@ if __name__ == '__main__': | |||||||
|   print('save-dir : {:}'.format(args.save_dir)) |   print('save-dir : {:}'.format(args.save_dir)) | ||||||
|  |  | ||||||
|   if args.rand_seed < 0: |   if args.rand_seed < 0: | ||||||
|     save_dir, all_info = None, {} |     save_dir, all_info = None, collections.OrderedDict() | ||||||
|     for i in range(args.loops_if_rand): |     for i in range(args.loops_if_rand): | ||||||
|       print ('{:} : {:03d}/{:03d}'.format(time_string(), i, args.loops_if_rand)) |       print ('{:} : {:03d}/{:03d}'.format(time_string(), i, args.loops_if_rand)) | ||||||
|       args.rand_seed = random.randint(1, 100000) |       args.rand_seed = random.randint(1, 100000) | ||||||
|   | |||||||
| @@ -145,6 +145,7 @@ def main(xargs, api): | |||||||
|   x_start_time = time.time() |   x_start_time = time.time() | ||||||
|   logger.log('Will start searching with time budget of {:} s.'.format(xargs.time_budget)) |   logger.log('Will start searching with time budget of {:} s.'.format(xargs.time_budget)) | ||||||
|   total_steps, total_costs, trace = 0, [], [] |   total_steps, total_costs, trace = 0, [], [] | ||||||
|  |   current_best_index = [] | ||||||
|   while len(total_costs) == 0 or total_costs[-1] < xargs.time_budget: |   while len(total_costs) == 0 or total_costs[-1] < xargs.time_budget: | ||||||
|     start_time = time.time() |     start_time = time.time() | ||||||
|     log_prob, action = select_action( policy ) |     log_prob, action = select_action( policy ) | ||||||
| @@ -162,9 +163,8 @@ def main(xargs, api): | |||||||
|     # accumulate time |     # accumulate time | ||||||
|     total_steps += 1 |     total_steps += 1 | ||||||
|     logger.log('step [{:3d}] : average-reward={:.3f} : policy_loss={:.4f} : {:}'.format(total_steps, baseline.value(), policy_loss.item(), policy.genotype())) |     logger.log('step [{:3d}] : average-reward={:.3f} : policy_loss={:.4f} : {:}'.format(total_steps, baseline.value(), policy_loss.item(), policy.genotype())) | ||||||
|     #logger.log('----> {:}'.format(policy.arch_parameters)) |     # to analyze | ||||||
|     #logger.log('') |     current_best_index.append(api.query_index_by_arch(max(trace, key=lambda x: x[0])[1])) | ||||||
|  |  | ||||||
|   # best_arch = policy.genotype() # first version |   # best_arch = policy.genotype() # first version | ||||||
|   best_arch = max(trace, key=lambda x: x[0])[1] |   best_arch = max(trace, key=lambda x: x[0])[1] | ||||||
|   logger.log('REINFORCE finish with {:} steps and {:.1f} s (real cost={:.3f}).'.format(total_steps, total_costs[-1], time.time()-x_start_time)) |   logger.log('REINFORCE finish with {:} steps and {:.1f} s (real cost={:.3f}).'.format(total_steps, total_costs[-1], time.time()-x_start_time)) | ||||||
| @@ -173,7 +173,7 @@ def main(xargs, api): | |||||||
|   logger.log('-'*100) |   logger.log('-'*100) | ||||||
|   logger.close() |   logger.close() | ||||||
|  |  | ||||||
|   return logger.log_dir, [api.query_index_by_arch(x[1]) for x in trace], total_costs |   return logger.log_dir, current_best_index, total_costs | ||||||
|  |  | ||||||
|  |  | ||||||
| if __name__ == '__main__': | if __name__ == '__main__': | ||||||
| @@ -203,7 +203,7 @@ if __name__ == '__main__': | |||||||
|   print('save-dir : {:}'.format(args.save_dir)) |   print('save-dir : {:}'.format(args.save_dir)) | ||||||
|  |  | ||||||
|   if args.rand_seed < 0: |   if args.rand_seed < 0: | ||||||
|     save_dir, all_info = None, {} |     save_dir, all_info = None, collections.OrderedDict() | ||||||
|     for i in range(args.loops_if_rand): |     for i in range(args.loops_if_rand): | ||||||
|       print ('{:} : {:03d}/{:03d}'.format(time_string(), i, args.loops_if_rand)) |       print ('{:} : {:03d}/{:03d}'.format(time_string(), i, args.loops_if_rand)) | ||||||
|       args.rand_seed = random.randint(1, 100000) |       args.rand_seed = random.randint(1, 100000) | ||||||
|   | |||||||
| @@ -13,5 +13,6 @@ do | |||||||
|   do |   do | ||||||
|     python ./exps/algos-v2/reinforce.py --dataset ${dataset} --search_space ${search_space} --learning_rate 0.001 |     python ./exps/algos-v2/reinforce.py --dataset ${dataset} --search_space ${search_space} --learning_rate 0.001 | ||||||
|     python ./exps/algos-v2/regularized_ea.py --dataset ${dataset} --search_space ${search_space} --ea_cycles 200 --ea_population 10 --ea_sample_size 3 |     python ./exps/algos-v2/regularized_ea.py --dataset ${dataset} --search_space ${search_space} --ea_cycles 200 --ea_population 10 --ea_sample_size 3 | ||||||
|  |     python ./exps/algos-v2/random_wo_share.py --dataset ${dataset} --search_space ${search_space} | ||||||
|   done |   done | ||||||
| done | done | ||||||
|   | |||||||
| @@ -3,7 +3,7 @@ | |||||||
| ############################################################### | ############################################################### | ||||||
| # Copyright (c) Xuanyi Dong [GitHub D-X-Y], 2020.06           # | # Copyright (c) Xuanyi Dong [GitHub D-X-Y], 2020.06           # | ||||||
| ############################################################### | ############################################################### | ||||||
| # Usage: python exps/experimental/vis-bench-algos.py  | # Usage: python exps/experimental/vis-bench-algos.py          # | ||||||
| ############################################################### | ############################################################### | ||||||
| import os, sys, time, torch, argparse | import os, sys, time, torch, argparse | ||||||
| import numpy as np | import numpy as np | ||||||
| @@ -30,6 +30,7 @@ def fetch_data(root_dir='./output/search', search_space='tss', dataset=None): | |||||||
|   alg2name, alg2path = OrderedDict(), OrderedDict() |   alg2name, alg2path = OrderedDict(), OrderedDict() | ||||||
|   alg2name['REA'] = 'R-EA-SS3' |   alg2name['REA'] = 'R-EA-SS3' | ||||||
|   alg2name['REINFORCE'] = 'REINFORCE-0.001' |   alg2name['REINFORCE'] = 'REINFORCE-0.001' | ||||||
|  |   # alg2name['RANDOM'] = 'RANDOM' | ||||||
|   for alg, name in alg2name.items(): |   for alg, name in alg2name.items(): | ||||||
|     alg2path[alg] = os.path.join(ss_dir, dataset, name, 'results.pth') |     alg2path[alg] = os.path.join(ss_dir, dataset, name, 'results.pth') | ||||||
|     assert os.path.isfile(alg2path[alg]) |     assert os.path.isfile(alg2path[alg]) | ||||||
| @@ -62,14 +63,15 @@ def visualize_curve(api, vis_save_dir, search_space, max_time): | |||||||
|   vis_save_dir = vis_save_dir.resolve() |   vis_save_dir = vis_save_dir.resolve() | ||||||
|   vis_save_dir.mkdir(parents=True, exist_ok=True) |   vis_save_dir.mkdir(parents=True, exist_ok=True) | ||||||
|  |  | ||||||
|   dpi, width, height = 250, 4700, 1500 |   dpi, width, height = 250, 5100, 1500 | ||||||
|   figsize = width / float(dpi), height / float(dpi) |   figsize = width / float(dpi), height / float(dpi) | ||||||
|   LabelSize, LegendFontsize = 14, 14 |   LabelSize, LegendFontsize = 14, 14 | ||||||
|  |  | ||||||
|   def sub_plot_fn(ax, dataset): |   def sub_plot_fn(ax, dataset): | ||||||
|     alg2data = fetch_data(search_space=search_space, dataset=dataset) |     alg2data = fetch_data(search_space=search_space, dataset=dataset) | ||||||
|     alg2accuracies = OrderedDict() |     alg2accuracies = OrderedDict() | ||||||
|     time_tickets = [float(i) / 100 * max_time for i in range(100)] |     total_tickets = 150 | ||||||
|  |     time_tickets = [float(i) / total_tickets * max_time for i in range(total_tickets)] | ||||||
|     colors = ['b', 'g', 'c', 'm', 'y'] |     colors = ['b', 'g', 'c', 'm', 'y'] | ||||||
|     for idx, (alg, data) in enumerate(alg2data.items()): |     for idx, (alg, data) in enumerate(alg2data.items()): | ||||||
|       print('plot alg : {:}'.format(alg)) |       print('plot alg : {:}'.format(alg)) | ||||||
| @@ -78,7 +80,10 @@ def visualize_curve(api, vis_save_dir, search_space, max_time): | |||||||
|         accuracy = query_performance(api, data, dataset, ticket) |         accuracy = query_performance(api, data, dataset, ticket) | ||||||
|         accuracies.append(accuracy) |         accuracies.append(accuracy) | ||||||
|       alg2accuracies[alg] = accuracies |       alg2accuracies[alg] = accuracies | ||||||
|       ax.plot(time_tickets, accuracies, c=colors[idx], label='{:}'.format(alg)) |       ax.plot([x/100 for x in time_tickets], accuracies, c=colors[idx], label='{:}'.format(alg)) | ||||||
|  |       ax.set_xlabel('Estimated wall-clock time (1e2 seconds)', fontsize=LabelSize) | ||||||
|  |       ax.set_ylabel('Test accuracy on {:}'.format(dataset), fontsize=LabelSize) | ||||||
|  |       ax.set_title('Searching results on {:}'.format(dataset), fontsize=LabelSize+4) | ||||||
|     ax.legend(loc=4, fontsize=LegendFontsize) |     ax.legend(loc=4, fontsize=LegendFontsize) | ||||||
|  |  | ||||||
|   fig, axs = plt.subplots(1, 3, figsize=figsize) |   fig, axs = plt.subplots(1, 3, figsize=figsize) | ||||||
| @@ -104,4 +109,3 @@ if __name__ == '__main__': | |||||||
|   visualize_curve(api201, save_dir, 'tss', args.max_time) |   visualize_curve(api201, save_dir, 'tss', args.max_time) | ||||||
|   api301 = NASBench301API(verbose=False) |   api301 = NASBench301API(verbose=False) | ||||||
|   visualize_curve(api301, save_dir, 'sss', args.max_time) |   visualize_curve(api301, save_dir, 'sss', args.max_time) | ||||||
|  |  | ||||||
|   | |||||||
		Reference in New Issue
	
	Block a user