This commit is contained in:
D-X-Y 2021-05-22 18:12:08 +08:00
parent c8e95b0ddc
commit ec241e4d69
4 changed files with 554 additions and 8 deletions

476
exps/LFNA/lfna-debug.py Normal file
View File

@ -0,0 +1,476 @@
#####################################################
# Copyright (c) Xuanyi Dong [GitHub D-X-Y], 2021.04 #
#####################################################
# python exps/LFNA/lfna-debug.py --env_version v1 --workers 0
# python exps/LFNA/lfna.py --env_version v1 --device cuda --lr 0.001
# python exps/LFNA/lfna.py --env_version v1 --device cuda --lr 0.002
#####################################################
import sys, time, copy, torch, random, argparse
from tqdm import tqdm
from copy import deepcopy
from pathlib import Path
lib_dir = (Path(__file__).parent / ".." / "..").resolve()
print("LIB-DIR: {:}".format(lib_dir))
if str(lib_dir) not in sys.path:
sys.path.insert(0, str(lib_dir))
from xautodl.procedures import (
prepare_seed,
prepare_logger,
save_checkpoint,
copy_checkpoint,
)
from xautodl.log_utils import time_string
from xautodl.log_utils import AverageMeter, convert_secs2time
from xautodl.utils import split_str2indexes
from xautodl.procedures.advanced_main import basic_train_fn, basic_eval_fn
from xautodl.procedures.metric_utils import SaveMetric, MSEMetric, ComposeMetric
from xautodl.datasets.synthetic_core import get_synthetic_env, EnvSampler
from xautodl.models.xcore import get_model
from xautodl.xlayers import super_core, trunc_normal_
from lfna_utils import lfna_setup, train_model, TimeData
from lfna_meta_model import LFNA_Meta
def epoch_train(loader, meta_model, base_model, optimizer, criterion, device, logger):
base_model.train()
meta_model.train()
loss_meter = AverageMeter()
for ibatch, batch_data in enumerate(loader):
timestamps, (batch_seq_inputs, batch_seq_targets) = batch_data
timestamps = timestamps.squeeze(dim=-1).to(device)
batch_seq_inputs = batch_seq_inputs.to(device)
batch_seq_targets = batch_seq_targets.to(device)
optimizer.zero_grad()
batch_seq_containers = meta_model(timestamps)
losses = []
for seq_containers, seq_inputs, seq_targets in zip(
batch_seq_containers, batch_seq_inputs, batch_seq_targets
):
for container, inputs, targets in zip(
seq_containers, seq_inputs, seq_targets
):
predictions = base_model.forward_with_container(inputs, container)
loss = criterion(predictions, targets)
losses.append(loss)
final_loss = torch.stack(losses).mean()
final_loss.backward()
optimizer.step()
loss_meter.update(final_loss.item())
return loss_meter
def epoch_evaluate(loader, meta_model, base_model, criterion, device, logger):
with torch.no_grad():
base_model.eval()
meta_model.eval()
loss_meter = AverageMeter()
for ibatch, batch_data in enumerate(loader):
timestamps, (batch_seq_inputs, batch_seq_targets) = batch_data
timestamps = timestamps.squeeze(dim=-1).to(device)
batch_seq_inputs = batch_seq_inputs.to(device)
batch_seq_targets = batch_seq_targets.to(device)
batch_seq_containers = meta_model(timestamps)
losses = []
for seq_containers, seq_inputs, seq_targets in zip(
batch_seq_containers, batch_seq_inputs, batch_seq_targets
):
for container, inputs, targets in zip(
seq_containers, seq_inputs, seq_targets
):
predictions = base_model.forward_with_container(inputs, container)
loss = criterion(predictions, targets)
losses.append(loss)
final_loss = torch.stack(losses).mean()
loss_meter.update(final_loss.item())
return loss_meter
def pretrain(base_model, meta_model, criterion, xenv, args, logger):
base_model.train()
meta_model.train()
optimizer = torch.optim.Adam(
meta_model.parameters(),
lr=args.lr,
weight_decay=args.weight_decay,
amsgrad=True,
)
logger.log("Pre-train the meta-model")
logger.log("Using the optimizer: {:}".format(optimizer))
meta_model.set_best_dir(logger.path(None) / "ckps-basic-pretrain")
rand_index = random.randint(0, meta_model.meta_length - xenv.seq_length - 1)
for iepoch in range(args.epochs):
left_time = "Time Left: {:}".format(
convert_secs2time(per_epoch_time.avg * (args.epochs - iepoch), True)
)
losses = []
for ibatch in range(args.meta_batch):
timestamps = meta_model.meta_timestamps[
rand_index : rand_index + xenv.seq_length
]
seq_timestamps, (seq_inputs, seq_targets) = xenv.seq_call(timestamps)
time_embeds = meta_model.super_meta_embed[
rand_index : rand_index + xenv.seq_length
]
[seq_containers], time_embeds = meta_model(
None, torch.unsqueeze(time_embeds, dim=0)
)
seq_inputs, seq_targets = seq_inputs.to(args.device), seq_targets.to(
args.device
)
for container, inputs, targets in zip(
seq_containers, seq_inputs, seq_targets
):
predictions = base_model.forward_with_container(inputs, container)
loss = criterion(predictions, targets)
losses.append(loss)
final_loss = torch.stack(losses).mean()
final_loss.backward()
optimizer.step()
# success
success, best_score = meta_model.save_best(-final_loss.item())
logger.log(
"{:} [{:04d}/{:}] loss : {:.5f}".format(
time_string(),
iepoch,
args.epochs,
final_loss.item(),
)
+ ", batch={:}".format(len(losses))
+ ", success={:}, best_score={:.4f}".format(success, -best_score)
+ " {:}".format(left_time)
)
per_epoch_time.update(time.time() - start_time)
start_time = time.time()
def main(args):
logger, env_info, model_kwargs = lfna_setup(args)
train_env = get_synthetic_env(mode="train", version=args.env_version)
valid_env = get_synthetic_env(mode="valid", version=args.env_version)
logger.log("training enviornment: {:}".format(train_env))
logger.log("validation enviornment: {:}".format(valid_env))
base_model = get_model(**model_kwargs)
base_model = base_model.to(args.device)
criterion = torch.nn.MSELoss()
shape_container = base_model.get_w_container().to_shape_container()
# pre-train the hypernetwork
timestamps = train_env.get_timestamp(None)
meta_model = LFNA_Meta(shape_container, args.layer_dim, args.time_dim, timestamps)
meta_model = meta_model.to(args.device)
logger.log("The base-model has {:} weights.".format(base_model.numel()))
logger.log("The meta-model has {:} weights.".format(meta_model.numel()))
batch_sampler = EnvSampler(train_env, args.meta_batch, args.sampler_enlarge)
train_env.reset_max_seq_length(args.seq_length)
valid_env.reset_max_seq_length(args.seq_length)
valid_env_loader = torch.utils.data.DataLoader(
valid_env,
batch_size=args.meta_batch,
shuffle=True,
num_workers=args.workers,
pin_memory=True,
)
train_env_loader = torch.utils.data.DataLoader(
train_env,
batch_sampler=batch_sampler,
num_workers=args.workers,
pin_memory=True,
)
optimizer = torch.optim.Adam(
meta_model.parameters(),
lr=args.lr,
weight_decay=args.weight_decay,
amsgrad=True,
)
lr_scheduler = torch.optim.lr_scheduler.MultiStepLR(
optimizer,
milestones=[1, 2, 3, 4, 5],
gamma=0.2,
)
logger.log("The base-model is\n{:}".format(base_model))
logger.log("The meta-model is\n{:}".format(meta_model))
logger.log("The optimizer is\n{:}".format(optimizer))
logger.log("The scheduler is\n{:}".format(lr_scheduler))
logger.log("Per epoch iterations = {:}".format(len(train_env_loader)))
pretrain(base_model, meta_model, criterion, train_env, args, logger)
if logger.path("model").exists():
ckp_data = torch.load(logger.path("model"))
base_model.load_state_dict(ckp_data["base_model"])
meta_model.load_state_dict(ckp_data["meta_model"])
optimizer.load_state_dict(ckp_data["optimizer"])
lr_scheduler.load_state_dict(ckp_data["lr_scheduler"])
last_success_epoch = ckp_data["last_success_epoch"]
start_epoch = ckp_data["iepoch"] + 1
check_strs = [
"epochs",
"env_version",
"hidden_dim",
"lr",
"layer_dim",
"time_dim",
"seq_length",
]
for xstr in check_strs:
cx = getattr(args, xstr)
px = getattr(ckp_data["args"], xstr)
assert cx == px, "[{:}] {:} vs {:}".format(xstr, cx, ps)
success, _ = meta_model.save_best(ckp_data["cur_score"])
logger.log("Load ckp from {:}".format(logger.path("model")))
if success:
logger.log(
"Re-save the best model with score={:}".format(ckp_data["cur_score"])
)
else:
start_epoch, last_success_epoch = 0, 0
# LFNA meta-train
meta_model.set_best_dir(logger.path(None) / "checkpoint")
per_epoch_time, start_time = AverageMeter(), time.time()
for iepoch in range(start_epoch, args.epochs):
head_str = "[{:}] [{:04d}/{:04d}] ".format(
time_string(), iepoch, args.epochs
) + "Time Left: {:}".format(
convert_secs2time(per_epoch_time.avg * (args.epochs - iepoch), True)
)
loss_meter = epoch_train(
train_env_loader,
meta_model,
base_model,
optimizer,
criterion,
args.device,
logger,
)
valid_loss_meter = epoch_evaluate(
valid_env_loader, meta_model, base_model, criterion, args.device, logger
)
logger.log(
head_str
+ " meta-train-loss: {meter.avg:.4f} ({meter.count:.0f})".format(
meter=loss_meter
)
+ " meta-valid-loss: {meter.val:.4f}".format(meter=valid_loss_meter)
+ " :: lr={:.5f}".format(min(lr_scheduler.get_last_lr()))
+ " :: last-success={:}".format(last_success_epoch)
)
success, best_score = meta_model.save_best(-loss_meter.avg)
if success:
logger.log("Achieve the best with best-score = {:.5f}".format(best_score))
last_success_epoch = iepoch
save_checkpoint(
{
"meta_model": meta_model.state_dict(),
"base_model": base_model.state_dict(),
"optimizer": optimizer.state_dict(),
"lr_scheduler": lr_scheduler.state_dict(),
"last_success_epoch": last_success_epoch,
"cur_score": -loss_meter.avg,
"iepoch": iepoch,
"args": args,
},
logger.path("model"),
logger,
)
if iepoch - last_success_epoch >= args.early_stop_thresh:
if lr_scheduler.last_epoch > 4:
logger.log("Early stop at {:}".format(iepoch))
break
else:
last_success_epoch = iepoch
lr_scheduler.step()
logger.log("Decay the lr [{:}]".format(lr_scheduler.last_epoch))
per_epoch_time.update(time.time() - start_time)
start_time = time.time()
# meta-test
meta_model.load_best()
eval_env = env_info["dynamic_env"]
w_container_per_epoch = dict()
for idx in range(args.seq_length, len(eval_env)):
# build-timestamp
future_time = env_info["{:}-timestamp".format(idx)].item()
time_seqs = []
for iseq in range(args.seq_length):
time_seqs.append(future_time - iseq * eval_env.timestamp_interval)
time_seqs.reverse()
with torch.no_grad():
meta_model.eval()
base_model.eval()
time_seqs = torch.Tensor(time_seqs).view(1, -1).to(args.device)
[seq_containers] = meta_model(time_seqs)
future_container = seq_containers[-1]
w_container_per_epoch[idx] = future_container.no_grad_clone()
# evaluation
future_x = env_info["{:}-x".format(idx)].to(args.device)
future_y = env_info["{:}-y".format(idx)].to(args.device)
future_y_hat = base_model.forward_with_container(
future_x, w_container_per_epoch[idx]
)
future_loss = criterion(future_y_hat, future_y)
logger.log(
"meta-test: [{:03d}] -> loss={:.4f}".format(idx, future_loss.item())
)
# creating the new meta-time-embedding
distance = meta_model.get_closest_meta_distance(future_time)
if distance < eval_env.timestamp_interval:
continue
#
new_param = meta_model.create_meta_embed()
optimizer = torch.optim.Adam(
[new_param], lr=args.refine_lr, weight_decay=1e-5, amsgrad=True
)
meta_model.replace_append_learnt(
torch.Tensor([future_time]).to(args.device), new_param
)
meta_model.eval()
base_model.train()
for iepoch in range(args.refine_epochs):
optimizer.zero_grad()
[seq_containers] = meta_model(time_seqs)
future_container = seq_containers[-1]
future_y_hat = base_model.forward_with_container(future_x, future_container)
future_loss = criterion(future_y_hat, future_y)
future_loss.backward()
optimizer.step()
logger.log(
"post-meta-test: [{:03d}] -> loss={:.4f}".format(idx, future_loss.item())
)
with torch.no_grad():
meta_model.replace_append_learnt(None, None)
meta_model.append_fixed(torch.Tensor([future_time]), new_param)
save_checkpoint(
{"w_container_per_epoch": w_container_per_epoch},
logger.path(None) / "final-ckp.pth",
logger,
)
logger.log("-" * 200 + "\n")
logger.close()
if __name__ == "__main__":
parser = argparse.ArgumentParser(".")
parser.add_argument(
"--save_dir",
type=str,
default="./outputs/lfna-synthetic/lfna-battle",
help="The checkpoint directory.",
)
parser.add_argument(
"--env_version",
type=str,
required=True,
help="The synthetic enviornment version.",
)
parser.add_argument(
"--hidden_dim",
type=int,
default=16,
help="The hidden dimension.",
)
parser.add_argument(
"--layer_dim",
type=int,
default=16,
help="The layer chunk dimension.",
)
parser.add_argument(
"--time_dim",
type=int,
default=16,
help="The timestamp dimension.",
)
#####
parser.add_argument(
"--lr",
type=float,
default=0.002,
help="The initial learning rate for the optimizer (default is Adam)",
)
parser.add_argument(
"--weight_decay",
type=float,
default=0.00001,
help="The weight decay for the optimizer (default is Adam)",
)
parser.add_argument(
"--meta_batch",
type=int,
default=64,
help="The batch size for the meta-model",
)
parser.add_argument(
"--sampler_enlarge",
type=int,
default=5,
help="Enlarge the #iterations for an epoch",
)
parser.add_argument("--epochs", type=int, default=10000, help="The total #epochs.")
parser.add_argument(
"--refine_lr",
type=float,
default=0.005,
help="The learning rate for the optimizer, during refine",
)
parser.add_argument(
"--refine_epochs", type=int, default=1000, help="The final refine #epochs."
)
parser.add_argument(
"--early_stop_thresh",
type=int,
default=20,
help="The #epochs for early stop.",
)
parser.add_argument(
"--seq_length", type=int, default=10, help="The sequence length."
)
parser.add_argument(
"--workers", type=int, default=4, help="The number of workers in parallel."
)
parser.add_argument(
"--device",
type=str,
default="cpu",
help="",
)
# Random Seed
parser.add_argument("--rand_seed", type=int, default=-1, help="manual seed")
args = parser.parse_args()
if args.rand_seed is None or args.rand_seed < 0:
args.rand_seed = random.randint(1, 100000)
assert args.save_dir is not None, "The save dir argument can not be None"
args.save_dir = "{:}-d{:}_{:}_{:}-s{:}-lr{:}-wd{:}-e{:}-env{:}".format(
args.save_dir,
args.hidden_dim,
args.layer_dim,
args.time_dim,
args.seq_length,
args.lr,
args.weight_decay,
args.epochs,
args.env_version,
)
main(args)

View File

@ -93,7 +93,7 @@ def epoch_evaluate(loader, meta_model, base_model, criterion, device, logger):
return loss_meter return loss_meter
def pretrain(base_model, meta_model, criterion, xenv, args, logger): def pretrain_v2(base_model, meta_model, criterion, xenv, args, logger):
optimizer = torch.optim.Adam( optimizer = torch.optim.Adam(
meta_model.parameters(), meta_model.parameters(),
lr=args.lr, lr=args.lr,
@ -164,6 +164,69 @@ def pretrain(base_model, meta_model, criterion, xenv, args, logger):
start_time = time.time() start_time = time.time()
def pretrain(base_model, meta_model, criterion, xenv, args, logger):
base_model.train()
meta_model.train()
optimizer = torch.optim.Adam(
meta_model.parameters(),
lr=args.lr,
weight_decay=args.weight_decay,
amsgrad=True,
)
logger.log("Pre-train the meta-model")
logger.log("Using the optimizer: {:}".format(optimizer))
meta_model.set_best_dir(logger.path(None) / "ckps-basic-pretrain")
meta_model.set_best_name("pretrain-{:}.pth".format(args.rand_seed))
per_epoch_time, start_time = AverageMeter(), time.time()
for iepoch in range(args.epochs):
left_time = "Time Left: {:}".format(
convert_secs2time(per_epoch_time.avg * (args.epochs - iepoch), True)
)
losses = []
optimizer.zero_grad()
for ibatch in range(args.meta_batch):
rand_index = random.randint(0, meta_model.meta_length - xenv.seq_length - 1)
timestamps = meta_model.meta_timestamps[
rand_index : rand_index + xenv.seq_length
]
seq_timestamps, (seq_inputs, seq_targets) = xenv.seq_call(timestamps)
time_embeds = meta_model.super_meta_embed[
rand_index : rand_index + xenv.seq_length
]
[seq_containers], time_embeds = meta_model(
None, torch.unsqueeze(time_embeds, dim=0)
)
seq_inputs, seq_targets = seq_inputs.to(args.device), seq_targets.to(
args.device
)
for container, inputs, targets in zip(
seq_containers, seq_inputs, seq_targets
):
predictions = base_model.forward_with_container(inputs, container)
loss = criterion(predictions, targets)
losses.append(loss)
final_loss = torch.stack(losses).mean()
final_loss.backward()
optimizer.step()
# success
success, best_score = meta_model.save_best(-final_loss.item())
logger.log(
"{:} [{:04d}/{:}] loss : {:.5f}".format(
time_string(),
iepoch,
args.epochs,
final_loss.item(),
)
+ ", batch={:}".format(len(losses))
+ ", success={:}, best_score={:.4f}".format(success, -best_score)
+ " {:}".format(left_time)
)
per_epoch_time.update(time.time() - start_time)
start_time = time.time()
def main(args): def main(args):
logger, env_info, model_kwargs = lfna_setup(args) logger, env_info, model_kwargs = lfna_setup(args)
train_env = get_synthetic_env(mode="train", version=args.env_version) train_env = get_synthetic_env(mode="train", version=args.env_version)

View File

@ -85,7 +85,6 @@ class LFNA_Meta(super_core.SuperModule):
dropout=dropout, dropout=dropout,
) )
self._generator = get_model(**model_kwargs) self._generator = get_model(**model_kwargs)
# print("generator: {:}".format(self._generator))
# initialization # initialization
trunc_normal_( trunc_normal_(
@ -163,9 +162,12 @@ class LFNA_Meta(super_core.SuperModule):
corrected_embeds = self.meta_corrector(init_timestamp_embeds) corrected_embeds = self.meta_corrector(init_timestamp_embeds)
return corrected_embeds return corrected_embeds
def forward_raw(self, timestamps): def forward_raw(self, timestamps, time_embed):
batch, seq = timestamps.shape if time_embed is None:
time_embed = self._obtain_time_embed(timestamps) batch, seq = timestamps.shape
time_embed = self._obtain_time_embed(timestamps)
else:
batch, seq, _ = time_embed.shape
# create joint embed # create joint embed
num_layer, _ = self._super_layer_embed.shape num_layer, _ = self._super_layer_embed.shape
meta_embed = time_embed.view(batch, seq, 1, -1).expand(-1, -1, num_layer, -1) meta_embed = time_embed.view(batch, seq, 1, -1).expand(-1, -1, num_layer, -1)

View File

@ -19,6 +19,7 @@ from .super_utils import TensorContainer
from .super_utils import ShapeContainer from .super_utils import ShapeContainer
BEST_DIR_KEY = "best_model_dir" BEST_DIR_KEY = "best_model_dir"
BEST_NAME_KEY = "best_model_name"
BEST_SCORE_KEY = "best_model_score" BEST_SCORE_KEY = "best_model_score"
@ -94,6 +95,9 @@ class SuperModule(abc.ABC, nn.Module):
self._meta_info[BEST_DIR_KEY] = str(xdir) self._meta_info[BEST_DIR_KEY] = str(xdir)
Path(xdir).mkdir(parents=True, exist_ok=True) Path(xdir).mkdir(parents=True, exist_ok=True)
def set_best_name(self, xname):
self._meta_info[BEST_NAME_KEY] = str(xname)
def save_best(self, score): def save_best(self, score):
if BEST_DIR_KEY not in self._meta_info: if BEST_DIR_KEY not in self._meta_info:
tempdir = tempfile.mkdtemp("-xlayers") tempdir = tempfile.mkdtemp("-xlayers")
@ -102,10 +106,11 @@ class SuperModule(abc.ABC, nn.Module):
self._meta_info[BEST_SCORE_KEY] = None self._meta_info[BEST_SCORE_KEY] = None
best_score = self._meta_info[BEST_SCORE_KEY] best_score = self._meta_info[BEST_SCORE_KEY]
if best_score is None or best_score <= score: if best_score is None or best_score <= score:
best_save_path = os.path.join( best_save_name = self._meta_info.get(
self._meta_info[BEST_DIR_KEY], BEST_NAME_KEY, "best-{:}.pth".format(self.__class__.__name__)
"best-{:}.pth".format(self.__class__.__name__),
) )
best_save_path = os.path.join(self._meta_info[BEST_DIR_KEY], best_save_name)
self._meta_info[BEST_SCORE_KEY] = score self._meta_info[BEST_SCORE_KEY] = score
torch.save(self.state_dict(), best_save_path) torch.save(self.state_dict(), best_save_path)
return True, self._meta_info[BEST_SCORE_KEY] return True, self._meta_info[BEST_SCORE_KEY]