Use black for lib/models
This commit is contained in:
		
							
								
								
									
										179
									
								
								exps/LFNA/lfna-tall-hpnet.py
									
									
									
									
									
										Normal file
									
								
							
							
						
						
									
										179
									
								
								exps/LFNA/lfna-tall-hpnet.py
									
									
									
									
									
										Normal file
									
								
							| @@ -0,0 +1,179 @@ | ||||
| ##################################################### | ||||
| # Copyright (c) Xuanyi Dong [GitHub D-X-Y], 2021.04 # | ||||
| ##################################################### | ||||
| # python exps/LFNA/lfna-tall-hpnet.py --env_version v1 --hidden_dim 16 | ||||
| ##################################################### | ||||
| import sys, time, copy, torch, random, argparse | ||||
| from tqdm import tqdm | ||||
| from copy import deepcopy | ||||
| from pathlib import Path | ||||
|  | ||||
| lib_dir = (Path(__file__).parent / ".." / ".." / "lib").resolve() | ||||
| if str(lib_dir) not in sys.path: | ||||
|     sys.path.insert(0, str(lib_dir)) | ||||
| from procedures import prepare_seed, prepare_logger, save_checkpoint, copy_checkpoint | ||||
| from log_utils import time_string | ||||
| from log_utils import AverageMeter, convert_secs2time | ||||
|  | ||||
| from utils import split_str2indexes | ||||
|  | ||||
| from procedures.advanced_main import basic_train_fn, basic_eval_fn | ||||
| from procedures.metric_utils import SaveMetric, MSEMetric, ComposeMetric | ||||
| from datasets.synthetic_core import get_synthetic_env | ||||
| from models.xcore import get_model | ||||
| from xlayers import super_core, trunc_normal_ | ||||
|  | ||||
|  | ||||
| from lfna_utils import lfna_setup, train_model, TimeData | ||||
|  | ||||
| # from lfna_models import HyperNet_VX as HyperNet | ||||
| from lfna_models import HyperNet | ||||
|  | ||||
|  | ||||
| def main(args): | ||||
|     logger, env_info, model_kwargs = lfna_setup(args) | ||||
|     dynamic_env = env_info["dynamic_env"] | ||||
|     model = get_model(dict(model_type="simple_mlp"), **model_kwargs) | ||||
|     criterion = torch.nn.MSELoss() | ||||
|  | ||||
|     logger.log("There are {:} weights.".format(model.get_w_container().numel())) | ||||
|  | ||||
|     shape_container = model.get_w_container().to_shape_container() | ||||
|     hypernet = HyperNet(shape_container, args.hidden_dim, args.task_dim) | ||||
|     total_bar = env_info["total"] - 1 | ||||
|     task_embeds = [] | ||||
|     for i in range(total_bar): | ||||
|         task_embeds.append(torch.nn.Parameter(torch.Tensor(1, args.task_dim))) | ||||
|     for task_embed in task_embeds: | ||||
|         trunc_normal_(task_embed, std=0.02) | ||||
|  | ||||
|     parameters = list(hypernet.parameters()) + task_embeds | ||||
|     optimizer = torch.optim.Adam(parameters, lr=args.init_lr, amsgrad=True) | ||||
|     lr_scheduler = torch.optim.lr_scheduler.MultiStepLR( | ||||
|         optimizer, | ||||
|         milestones=[ | ||||
|             int(args.epochs * 0.8), | ||||
|             int(args.epochs * 0.9), | ||||
|         ], | ||||
|         gamma=0.1, | ||||
|     ) | ||||
|  | ||||
|     # LFNA meta-training | ||||
|     loss_meter = AverageMeter() | ||||
|     per_epoch_time, start_time = AverageMeter(), time.time() | ||||
|     for iepoch in range(args.epochs): | ||||
|  | ||||
|         need_time = "Time Left: {:}".format( | ||||
|             convert_secs2time(per_epoch_time.avg * (args.epochs - iepoch), True) | ||||
|         ) | ||||
|         head_str = ( | ||||
|             "[{:}] [{:04d}/{:04d}] ".format(time_string(), iepoch, args.epochs) | ||||
|             + need_time | ||||
|         ) | ||||
|  | ||||
|         limit_bar = float(iepoch + 1) / args.epochs * total_bar | ||||
|         limit_bar = min(max(0, int(limit_bar)), total_bar) | ||||
|         losses = [] | ||||
|         for ibatch in range(args.meta_batch): | ||||
|             cur_time = random.randint(0, limit_bar) | ||||
|             cur_task_embed = task_embeds[cur_time] | ||||
|             cur_container = hypernet(cur_task_embed) | ||||
|             cur_x = env_info["{:}-x".format(cur_time)] | ||||
|             cur_y = env_info["{:}-y".format(cur_time)] | ||||
|             cur_dataset = TimeData(cur_time, cur_x, cur_y) | ||||
|  | ||||
|             preds = model.forward_with_container(cur_dataset.x, cur_container) | ||||
|             optimizer.zero_grad() | ||||
|             loss = criterion(preds, cur_dataset.y) | ||||
|  | ||||
|             losses.append(loss) | ||||
|  | ||||
|         final_loss = torch.stack(losses).mean() | ||||
|         final_loss.backward() | ||||
|         optimizer.step() | ||||
|         lr_scheduler.step() | ||||
|  | ||||
|         loss_meter.update(final_loss.item()) | ||||
|         if iepoch % 200 == 0: | ||||
|             logger.log( | ||||
|                 head_str | ||||
|                 + "meta-loss: {:.4f} ({:.4f}) :: lr={:.5f}, batch={:}, limit={:}".format( | ||||
|                     loss_meter.avg, | ||||
|                     loss_meter.val, | ||||
|                     min(lr_scheduler.get_last_lr()), | ||||
|                     len(losses), | ||||
|                     limit_bar, | ||||
|                 ) | ||||
|             ) | ||||
|  | ||||
|             save_checkpoint( | ||||
|                 { | ||||
|                     "hypernet": hypernet.state_dict(), | ||||
|                     "task_embed": task_embed, | ||||
|                     "lr_scheduler": lr_scheduler.state_dict(), | ||||
|                     "iepoch": iepoch, | ||||
|                 }, | ||||
|                 logger.path("model"), | ||||
|                 logger, | ||||
|             ) | ||||
|             loss_meter.reset() | ||||
|         per_epoch_time.update(time.time() - start_time) | ||||
|         start_time = time.time() | ||||
|  | ||||
|     print(model) | ||||
|     print(hypernet) | ||||
|  | ||||
|     logger.log("-" * 200 + "\n") | ||||
|     logger.close() | ||||
|  | ||||
|  | ||||
| if __name__ == "__main__": | ||||
|     parser = argparse.ArgumentParser("Use the data in the past.") | ||||
|     parser.add_argument( | ||||
|         "--save_dir", | ||||
|         type=str, | ||||
|         default="./outputs/lfna-synthetic/lfna-tall-hpnet", | ||||
|         help="The checkpoint directory.", | ||||
|     ) | ||||
|     parser.add_argument( | ||||
|         "--env_version", | ||||
|         type=str, | ||||
|         required=True, | ||||
|         help="The synthetic enviornment version.", | ||||
|     ) | ||||
|     parser.add_argument( | ||||
|         "--hidden_dim", | ||||
|         type=int, | ||||
|         required=True, | ||||
|         help="The hidden dimension.", | ||||
|     ) | ||||
|     ##### | ||||
|     parser.add_argument( | ||||
|         "--init_lr", | ||||
|         type=float, | ||||
|         default=0.1, | ||||
|         help="The initial learning rate for the optimizer (default is Adam)", | ||||
|     ) | ||||
|     parser.add_argument( | ||||
|         "--meta_batch", | ||||
|         type=int, | ||||
|         default=64, | ||||
|         help="The batch size for the meta-model", | ||||
|     ) | ||||
|     parser.add_argument( | ||||
|         "--epochs", | ||||
|         type=int, | ||||
|         default=2000, | ||||
|         help="The total number of epochs.", | ||||
|     ) | ||||
|     # Random Seed | ||||
|     parser.add_argument("--rand_seed", type=int, default=-1, help="manual seed") | ||||
|     args = parser.parse_args() | ||||
|     if args.rand_seed is None or args.rand_seed < 0: | ||||
|         args.rand_seed = random.randint(1, 100000) | ||||
|     assert args.save_dir is not None, "The save dir argument can not be None" | ||||
|     args.task_dim = args.hidden_dim | ||||
|     args.save_dir = "{:}-{:}-d{:}".format( | ||||
|         args.save_dir, args.env_version, args.hidden_dim | ||||
|     ) | ||||
|     main(args) | ||||
| @@ -41,10 +41,14 @@ def main(args): | ||||
|     shape_container = model.get_w_container().to_shape_container() | ||||
|     hypernet = HyperNet(shape_container, args.hidden_dim, args.task_dim) | ||||
|     # task_embed = torch.nn.Parameter(torch.Tensor(env_info["total"], args.task_dim)) | ||||
|     task_embed = torch.nn.Parameter(torch.Tensor(1, args.task_dim)) | ||||
|     trunc_normal_(task_embed, std=0.02) | ||||
|     total_bar = 10 | ||||
|     task_embeds = [] | ||||
|     for i in range(total_bar): | ||||
|         task_embeds.append(torch.nn.Parameter(torch.Tensor(1, args.task_dim))) | ||||
|     for task_embed in task_embeds: | ||||
|         trunc_normal_(task_embed, std=0.02) | ||||
|  | ||||
|     parameters = list(hypernet.parameters()) + [task_embed] | ||||
|     parameters = list(hypernet.parameters()) + task_embeds | ||||
|     optimizer = torch.optim.Adam(parameters, lr=args.init_lr, amsgrad=True) | ||||
|     lr_scheduler = torch.optim.lr_scheduler.MultiStepLR( | ||||
|         optimizer, | ||||
| @@ -56,7 +60,6 @@ def main(args): | ||||
|     ) | ||||
|  | ||||
|     # total_bar = env_info["total"] - 1 | ||||
|     total_bar = 1 | ||||
|     # LFNA meta-training | ||||
|     loss_meter = AverageMeter() | ||||
|     per_epoch_time, start_time = AverageMeter(), time.time() | ||||
| @@ -74,7 +77,7 @@ def main(args): | ||||
|         # for ibatch in range(args.meta_batch): | ||||
|         for cur_time in range(total_bar): | ||||
|             # cur_time = random.randint(0, total_bar) | ||||
|             cur_task_embed = task_embed | ||||
|             cur_task_embed = task_embeds[cur_time] | ||||
|             cur_container = hypernet(cur_task_embed) | ||||
|             cur_x = env_info["{:}-x".format(cur_time)] | ||||
|             cur_y = env_info["{:}-y".format(cur_time)] | ||||
| @@ -98,7 +101,7 @@ def main(args): | ||||
|                 + "meta-loss: {:.4f} ({:.4f}) :: lr={:.5f}, batch={:}".format( | ||||
|                     loss_meter.avg, | ||||
|                     loss_meter.val, | ||||
|                     min(lr_scheduler.get_lr()), | ||||
|                     min(lr_scheduler.get_last_lr()), | ||||
|                     len(losses), | ||||
|                 ) | ||||
|             ) | ||||
|   | ||||
| @@ -28,6 +28,15 @@ class HyperNet(super_core.SuperModule): | ||||
|         ) | ||||
|         trunc_normal_(self._super_layer_embed, std=0.02) | ||||
|  | ||||
|         model_kwargs = dict( | ||||
|             input_dim=layer_embeding + task_embedding, | ||||
|             output_dim=max(self._numel_per_layer), | ||||
|             hidden_dims=[layer_embeding * 4] * 4, | ||||
|             act_cls="gelu", | ||||
|             norm_cls="layer_norm_1d", | ||||
|         ) | ||||
|         self._generator = get_model(dict(model_type="norm_mlp"), **model_kwargs) | ||||
|         """ | ||||
|         model_kwargs = dict( | ||||
|             input_dim=layer_embeding + task_embedding, | ||||
|             output_dim=max(self._numel_per_layer), | ||||
| @@ -36,6 +45,7 @@ class HyperNet(super_core.SuperModule): | ||||
|             norm_cls="identity", | ||||
|         ) | ||||
|         self._generator = get_model(dict(model_type="simple_mlp"), **model_kwargs) | ||||
|         """ | ||||
|         self._return_container = return_container | ||||
|         print("generator: {:}".format(self._generator)) | ||||
|  | ||||
|   | ||||
		Reference in New Issue
	
	Block a user