diff --git a/README.md b/README.md index a2b3d94..4fdd656 100644 --- a/README.md +++ b/README.md @@ -1,4 +1,7 @@ -# Automated Deep Learning (AutoDL) +

+ +

+ --------- [![MIT licensed](https://img.shields.io/badge/license-MIT-brightgreen.svg)](LICENSE.md) diff --git a/exps-tf/GDAS.py b/exps-tf/GDAS.py index 42dafc3..ff7bea9 100644 --- a/exps-tf/GDAS.py +++ b/exps-tf/GDAS.py @@ -1,5 +1,5 @@ # CUDA_VISIBLE_DEVICES=0 python exps-tf/GDAS.py -import os, sys, time, random, argparse +import os, sys, math, time, random, argparse import tensorflow as tf from pathlib import Path @@ -23,6 +23,24 @@ def pre_process(image_a, label_a, image_b, label_b): return standard_func(image_a), label_a, standard_func(image_b), label_b +class CosineAnnealingLR(object): + def __init__(self, warmup_epochs, epochs, initial_lr, min_lr): + self.warmup_epochs = warmup_epochs + self.epochs = epochs + self.initial_lr = initial_lr + self.min_lr = min_lr + + def get_lr(self, epoch): + if epoch < self.warmup_epochs: + lr = self.min_lr + (epoch/self.warmup_epochs) * (self.initial_lr-self.min_lr) + elif epoch >= self.epochs: + lr = self.min_lr + else: + lr = self.min_lr + (self.initial_lr-self.min_lr) * 0.5 * (1 + math.cos(math.pi * epoch / self.epochs)) + return lr + + + def main(xargs): cifar10 = tf.keras.datasets.cifar10 @@ -50,13 +68,12 @@ def main(xargs): 'C' : xargs.channel, 'N': xargs.num_cells, 'max_nodes': xargs.max_nodes, 'num_classes': 10, 'space': 'nas-bench-201', 'affine': True}, None) model = get_cell_based_tiny_net(config) - #import pdb; pdb.set_trace() - #model.build(((64, 32, 32, 3), (1,))) - #for x in model.trainable_variables: - # print('{:30s} : {:}'.format(x.name, x.shape)) + num_iters_per_epoch = int(tf.data.experimental.cardinality(search_ds).numpy()) + #lr_schedular = tf.keras.experimental.CosineDecay(xargs.w_lr_max, num_iters_per_epoch*xargs.epochs, xargs.w_lr_min / xargs.w_lr_max) + lr_schedular = CosineAnnealingLR(0, xargs.epochs, xargs.w_lr_max, xargs.w_lr_min) # Choose optimizer loss_object = tf.keras.losses.SparseCategoricalCrossentropy() - w_optimizer = SGDW(learning_rate=xargs.w_lr, weight_decay=xargs.w_weight_decay, momentum=xargs.w_momentum, nesterov=True) + w_optimizer = SGDW(learning_rate=xargs.w_lr_max, weight_decay=xargs.w_weight_decay, momentum=xargs.w_momentum, nesterov=True) a_optimizer = AdamW(learning_rate=xargs.arch_learning_rate, weight_decay=xargs.arch_weight_decay, beta_1=0.5, beta_2=0.999, epsilon=1e-07) #w_optimizer = tf.keras.optimizers.SGD(learning_rate=0.025, momentum=0.9, nesterov=True) #a_optimizer = tf.keras.optimizers.AdamW(learning_rate=xargs.arch_learning_rate, beta_1=0.5, beta_2=0.999, epsilon=1e-07) @@ -99,7 +116,7 @@ def main(xargs): test_loss(t_loss) test_accuracy(labels, predictions) - print('{:} start searching with {:} epochs ({:} batches per epoch).'.format(time_string(), xargs.epochs, tf.data.experimental.cardinality(search_ds).numpy())) + print('{:} start searching with {:} epochs ({:} batches per epoch).'.format(time_string(), xargs.epochs, num_iters_per_epoch)) for epoch in range(xargs.epochs): # Reset the metrics at the start of the next epoch @@ -107,6 +124,8 @@ def main(xargs): test_loss.reset_states() ; test_accuracy.reset_states() cur_tau = xargs.tau_max - (xargs.tau_max-xargs.tau_min) * epoch / (xargs.epochs-1) tf_tau = tf.cast(cur_tau, dtype=tf.float32, name='tau') + cur_lr = lr_schedular.get_lr(epoch) + tf.keras.backend.set_value(w_optimizer.lr, cur_lr) for trn_imgs, trn_labels, val_imgs, val_labels in search_ds: search_step(trn_imgs, trn_labels, val_imgs, val_labels, tf_tau) @@ -116,22 +135,26 @@ def main(xargs): #for test_images, test_labels in test_ds: # test_step(test_images, test_labels) - template = '{:} Epoch {:03d}/{:03d}, Train-Loss: {:.3f}, Train-Accuracy: {:.2f}%, Valid-Loss: {:.3f}, Valid-Accuracy: {:.2f}% | tau={:.3f}' + cur_lr = float(tf.keras.backend.get_value(w_optimizer.lr)) + template = '{:} Epoch {:03d}/{:03d}, Train-Loss: {:.3f}, Train-Accuracy: {:.2f}%, Valid-Loss: {:.3f}, Valid-Accuracy: {:.2f}% | tau={:.3f} | lr={:.6f}' print(template.format(time_string(), epoch+1, xargs.epochs, train_loss.result(), train_accuracy.result()*100, valid_loss.result(), valid_accuracy.result()*100, - cur_tau)) + cur_tau, + cur_lr)) print('{:} genotype : {:}\n{:}\n'.format(time_string(), genotype, model.get_np_alphas())) + if __name__ == '__main__': parser = argparse.ArgumentParser(description='NAS-Bench-201', formatter_class=argparse.ArgumentDefaultsHelpFormatter) # training details parser.add_argument('--epochs' , type=int , default= 250 , help='') parser.add_argument('--tau_max' , type=float, default= 10 , help='') parser.add_argument('--tau_min' , type=float, default= 0.1 , help='') - parser.add_argument('--w_lr' , type=float, default= 0.025, help='') + parser.add_argument('--w_lr_max' , type=float, default= 0.025, help='') + parser.add_argument('--w_lr_min' , type=float, default= 0.001, help='') parser.add_argument('--w_weight_decay' , type=float, default=0.0005, help='') parser.add_argument('--w_momentum' , type=float, default= 0.9 , help='') parser.add_argument('--arch_learning_rate', type=float, default=0.0003, help='') diff --git a/lib/tf_models/cell_operations.py b/lib/tf_models/cell_operations.py index 056c55e..78f1c2a 100644 --- a/lib/tf_models/cell_operations.py +++ b/lib/tf_models/cell_operations.py @@ -11,7 +11,7 @@ OPS = { 'nor_conv_1x1': lambda C_in, C_out, stride, affine: ReLUConvBN(C_in, C_out, 1, stride, affine), 'nor_conv_3x3': lambda C_in, C_out, stride, affine: ReLUConvBN(C_in, C_out, 3, stride, affine), 'nor_conv_5x5': lambda C_in, C_out, stride, affine: ReLUConvBN(C_in, C_out, 5, stride, affine), - 'skip_connect': lambda C_in, C_out, stride, affine: Identity(C_in, C_out, stride) + 'skip_connect': lambda C_in, C_out, stride, affine: Identity(C_in, C_out, stride) if stride == 1 and C_in == C_out else FactorizedReduce(C_in, C_out, stride, affine) } NAS_BENCH_201 = ['none', 'skip_connect', 'nor_conv_1x1', 'nor_conv_3x3', 'avg_pool_3x3'] @@ -87,6 +87,36 @@ class ReLUConvBN(tf.keras.layers.Layer): return x +class FactorizedReduce(tf.keras.layers.Layer): + def __init__(self, C_in, C_out, stride, affine): + assert output_filters % 2 == 0, ('Need even number of filters when using this factorized reduction.') + self.stride == stride + self.relu = tf.keras.activations.relu + if stride == 1: + self.layer = tf.keras.Sequential([ + tf.keras.layers.Conv2D(C_out, 1, strides, padding='same', use_bias=False), + tf.keras.layers.BatchNormalization(center=affine, scale=affine)]) + elif stride == 2: + stride_spec = [1, stride, stride, 1] # data_format == 'NHWC' + self.layer1 = tf.keras.layers.Conv2D(C_out//2, 1, strides, padding='same', use_bias=False) + self.layer2 = tf.keras.layers.Conv2D(C_out//2, 1, strides, padding='same', use_bias=False) + self.bn = tf.keras.layers.BatchNormalization(center=affine, scale=affine) + else: + raise ValueError('invalid stride={:}'.format(stride)) + + def call(self, inputs, training): + x = self.relu(inputs) + if self.stride == 1: + return self.layer(x, training) + else: + path1 = x + path2 = tf.pad(x, [[0, 0], [0, 1], [0, 1], [0, 0]])[:, 1:, 1:, :] # data_format == 'NHWC' + x1 = self.layer1(path1) + x2 = self.layer2(path2) + final_path = tf.concat(values=[x1, x2], axis=3) + return self.bn(final_path) + + class ResNetBasicblock(tf.keras.layers.Layer): def __init__(self, inplanes, planes, stride, affine=True):