From f49f8c7451c3960cd652512ef63f608599d1a347 Mon Sep 17 00:00:00 2001
From: D-X-Y <280835372@qq.com>
Date: Sat, 18 Jan 2020 00:07:35 +1100
Subject: [PATCH] update tf-GDAS
---
README.md | 5 +++-
exps-tf/GDAS.py | 43 ++++++++++++++++++++++++--------
lib/tf_models/cell_operations.py | 32 +++++++++++++++++++++++-
3 files changed, 68 insertions(+), 12 deletions(-)
diff --git a/README.md b/README.md
index a2b3d94..4fdd656 100644
--- a/README.md
+++ b/README.md
@@ -1,4 +1,7 @@
-# Automated Deep Learning (AutoDL)
+
+
+
+
---------
[](LICENSE.md)
diff --git a/exps-tf/GDAS.py b/exps-tf/GDAS.py
index 42dafc3..ff7bea9 100644
--- a/exps-tf/GDAS.py
+++ b/exps-tf/GDAS.py
@@ -1,5 +1,5 @@
# CUDA_VISIBLE_DEVICES=0 python exps-tf/GDAS.py
-import os, sys, time, random, argparse
+import os, sys, math, time, random, argparse
import tensorflow as tf
from pathlib import Path
@@ -23,6 +23,24 @@ def pre_process(image_a, label_a, image_b, label_b):
return standard_func(image_a), label_a, standard_func(image_b), label_b
+class CosineAnnealingLR(object):
+ def __init__(self, warmup_epochs, epochs, initial_lr, min_lr):
+ self.warmup_epochs = warmup_epochs
+ self.epochs = epochs
+ self.initial_lr = initial_lr
+ self.min_lr = min_lr
+
+ def get_lr(self, epoch):
+ if epoch < self.warmup_epochs:
+ lr = self.min_lr + (epoch/self.warmup_epochs) * (self.initial_lr-self.min_lr)
+ elif epoch >= self.epochs:
+ lr = self.min_lr
+ else:
+ lr = self.min_lr + (self.initial_lr-self.min_lr) * 0.5 * (1 + math.cos(math.pi * epoch / self.epochs))
+ return lr
+
+
+
def main(xargs):
cifar10 = tf.keras.datasets.cifar10
@@ -50,13 +68,12 @@ def main(xargs):
'C' : xargs.channel, 'N': xargs.num_cells, 'max_nodes': xargs.max_nodes,
'num_classes': 10, 'space': 'nas-bench-201', 'affine': True}, None)
model = get_cell_based_tiny_net(config)
- #import pdb; pdb.set_trace()
- #model.build(((64, 32, 32, 3), (1,)))
- #for x in model.trainable_variables:
- # print('{:30s} : {:}'.format(x.name, x.shape))
+ num_iters_per_epoch = int(tf.data.experimental.cardinality(search_ds).numpy())
+ #lr_schedular = tf.keras.experimental.CosineDecay(xargs.w_lr_max, num_iters_per_epoch*xargs.epochs, xargs.w_lr_min / xargs.w_lr_max)
+ lr_schedular = CosineAnnealingLR(0, xargs.epochs, xargs.w_lr_max, xargs.w_lr_min)
# Choose optimizer
loss_object = tf.keras.losses.SparseCategoricalCrossentropy()
- w_optimizer = SGDW(learning_rate=xargs.w_lr, weight_decay=xargs.w_weight_decay, momentum=xargs.w_momentum, nesterov=True)
+ w_optimizer = SGDW(learning_rate=xargs.w_lr_max, weight_decay=xargs.w_weight_decay, momentum=xargs.w_momentum, nesterov=True)
a_optimizer = AdamW(learning_rate=xargs.arch_learning_rate, weight_decay=xargs.arch_weight_decay, beta_1=0.5, beta_2=0.999, epsilon=1e-07)
#w_optimizer = tf.keras.optimizers.SGD(learning_rate=0.025, momentum=0.9, nesterov=True)
#a_optimizer = tf.keras.optimizers.AdamW(learning_rate=xargs.arch_learning_rate, beta_1=0.5, beta_2=0.999, epsilon=1e-07)
@@ -99,7 +116,7 @@ def main(xargs):
test_loss(t_loss)
test_accuracy(labels, predictions)
- print('{:} start searching with {:} epochs ({:} batches per epoch).'.format(time_string(), xargs.epochs, tf.data.experimental.cardinality(search_ds).numpy()))
+ print('{:} start searching with {:} epochs ({:} batches per epoch).'.format(time_string(), xargs.epochs, num_iters_per_epoch))
for epoch in range(xargs.epochs):
# Reset the metrics at the start of the next epoch
@@ -107,6 +124,8 @@ def main(xargs):
test_loss.reset_states() ; test_accuracy.reset_states()
cur_tau = xargs.tau_max - (xargs.tau_max-xargs.tau_min) * epoch / (xargs.epochs-1)
tf_tau = tf.cast(cur_tau, dtype=tf.float32, name='tau')
+ cur_lr = lr_schedular.get_lr(epoch)
+ tf.keras.backend.set_value(w_optimizer.lr, cur_lr)
for trn_imgs, trn_labels, val_imgs, val_labels in search_ds:
search_step(trn_imgs, trn_labels, val_imgs, val_labels, tf_tau)
@@ -116,22 +135,26 @@ def main(xargs):
#for test_images, test_labels in test_ds:
# test_step(test_images, test_labels)
- template = '{:} Epoch {:03d}/{:03d}, Train-Loss: {:.3f}, Train-Accuracy: {:.2f}%, Valid-Loss: {:.3f}, Valid-Accuracy: {:.2f}% | tau={:.3f}'
+ cur_lr = float(tf.keras.backend.get_value(w_optimizer.lr))
+ template = '{:} Epoch {:03d}/{:03d}, Train-Loss: {:.3f}, Train-Accuracy: {:.2f}%, Valid-Loss: {:.3f}, Valid-Accuracy: {:.2f}% | tau={:.3f} | lr={:.6f}'
print(template.format(time_string(), epoch+1, xargs.epochs,
train_loss.result(),
train_accuracy.result()*100,
valid_loss.result(),
valid_accuracy.result()*100,
- cur_tau))
+ cur_tau,
+ cur_lr))
print('{:} genotype : {:}\n{:}\n'.format(time_string(), genotype, model.get_np_alphas()))
+
if __name__ == '__main__':
parser = argparse.ArgumentParser(description='NAS-Bench-201', formatter_class=argparse.ArgumentDefaultsHelpFormatter)
# training details
parser.add_argument('--epochs' , type=int , default= 250 , help='')
parser.add_argument('--tau_max' , type=float, default= 10 , help='')
parser.add_argument('--tau_min' , type=float, default= 0.1 , help='')
- parser.add_argument('--w_lr' , type=float, default= 0.025, help='')
+ parser.add_argument('--w_lr_max' , type=float, default= 0.025, help='')
+ parser.add_argument('--w_lr_min' , type=float, default= 0.001, help='')
parser.add_argument('--w_weight_decay' , type=float, default=0.0005, help='')
parser.add_argument('--w_momentum' , type=float, default= 0.9 , help='')
parser.add_argument('--arch_learning_rate', type=float, default=0.0003, help='')
diff --git a/lib/tf_models/cell_operations.py b/lib/tf_models/cell_operations.py
index 056c55e..78f1c2a 100644
--- a/lib/tf_models/cell_operations.py
+++ b/lib/tf_models/cell_operations.py
@@ -11,7 +11,7 @@ OPS = {
'nor_conv_1x1': lambda C_in, C_out, stride, affine: ReLUConvBN(C_in, C_out, 1, stride, affine),
'nor_conv_3x3': lambda C_in, C_out, stride, affine: ReLUConvBN(C_in, C_out, 3, stride, affine),
'nor_conv_5x5': lambda C_in, C_out, stride, affine: ReLUConvBN(C_in, C_out, 5, stride, affine),
- 'skip_connect': lambda C_in, C_out, stride, affine: Identity(C_in, C_out, stride)
+ 'skip_connect': lambda C_in, C_out, stride, affine: Identity(C_in, C_out, stride) if stride == 1 and C_in == C_out else FactorizedReduce(C_in, C_out, stride, affine)
}
NAS_BENCH_201 = ['none', 'skip_connect', 'nor_conv_1x1', 'nor_conv_3x3', 'avg_pool_3x3']
@@ -87,6 +87,36 @@ class ReLUConvBN(tf.keras.layers.Layer):
return x
+class FactorizedReduce(tf.keras.layers.Layer):
+ def __init__(self, C_in, C_out, stride, affine):
+ assert output_filters % 2 == 0, ('Need even number of filters when using this factorized reduction.')
+ self.stride == stride
+ self.relu = tf.keras.activations.relu
+ if stride == 1:
+ self.layer = tf.keras.Sequential([
+ tf.keras.layers.Conv2D(C_out, 1, strides, padding='same', use_bias=False),
+ tf.keras.layers.BatchNormalization(center=affine, scale=affine)])
+ elif stride == 2:
+ stride_spec = [1, stride, stride, 1] # data_format == 'NHWC'
+ self.layer1 = tf.keras.layers.Conv2D(C_out//2, 1, strides, padding='same', use_bias=False)
+ self.layer2 = tf.keras.layers.Conv2D(C_out//2, 1, strides, padding='same', use_bias=False)
+ self.bn = tf.keras.layers.BatchNormalization(center=affine, scale=affine)
+ else:
+ raise ValueError('invalid stride={:}'.format(stride))
+
+ def call(self, inputs, training):
+ x = self.relu(inputs)
+ if self.stride == 1:
+ return self.layer(x, training)
+ else:
+ path1 = x
+ path2 = tf.pad(x, [[0, 0], [0, 1], [0, 1], [0, 0]])[:, 1:, 1:, :] # data_format == 'NHWC'
+ x1 = self.layer1(path1)
+ x2 = self.layer2(path2)
+ final_path = tf.concat(values=[x1, x2], axis=3)
+ return self.bn(final_path)
+
+
class ResNetBasicblock(tf.keras.layers.Layer):
def __init__(self, inplanes, planes, stride, affine=True):