Reformulate via black
This commit is contained in:
		| @@ -7,78 +7,112 @@ import sys, time, argparse, collections | ||||
| import torch | ||||
| from pathlib import Path | ||||
| from collections import defaultdict | ||||
| lib_dir = (Path(__file__).parent / '..' / '..' / 'lib').resolve() | ||||
| if str(lib_dir) not in sys.path: sys.path.insert(0, str(lib_dir)) | ||||
| from log_utils    import AverageMeter, time_string, convert_secs2time | ||||
|  | ||||
| lib_dir = (Path(__file__).parent / ".." / ".." / "lib").resolve() | ||||
| if str(lib_dir) not in sys.path: | ||||
|     sys.path.insert(0, str(lib_dir)) | ||||
| from log_utils import AverageMeter, time_string, convert_secs2time | ||||
|  | ||||
|  | ||||
| def check_files(save_dir, meta_file, basestr): | ||||
|   meta_infos = torch.load(meta_file, map_location='cpu') | ||||
|   meta_archs = meta_infos['archs'] | ||||
|   meta_num_archs = meta_infos['total'] | ||||
|   assert meta_num_archs == len(meta_archs), 'invalid number of archs : {:} vs {:}'.format(meta_num_archs, len(meta_archs)) | ||||
|     meta_infos = torch.load(meta_file, map_location="cpu") | ||||
|     meta_archs = meta_infos["archs"] | ||||
|     meta_num_archs = meta_infos["total"] | ||||
|     assert meta_num_archs == len(meta_archs), "invalid number of archs : {:} vs {:}".format( | ||||
|         meta_num_archs, len(meta_archs) | ||||
|     ) | ||||
|  | ||||
|   sub_model_dirs = sorted(list(save_dir.glob('*-*-{:}'.format(basestr)))) | ||||
|   print ('{:} find {:} directories used to save checkpoints'.format(time_string(), len(sub_model_dirs))) | ||||
|    | ||||
|   subdir2archs, num_evaluated_arch = collections.OrderedDict(), 0 | ||||
|   num_seeds = defaultdict(lambda: 0) | ||||
|   for index, sub_dir in enumerate(sub_model_dirs): | ||||
|     xcheckpoints = list(sub_dir.glob('arch-*-seed-*.pth')) | ||||
|     #xcheckpoints = list(sub_dir.glob('arch-*-seed-0777.pth')) + list(sub_dir.glob('arch-*-seed-0888.pth')) + list(sub_dir.glob('arch-*-seed-0999.pth')) | ||||
|     arch_indexes = set() | ||||
|     for checkpoint in xcheckpoints: | ||||
|       temp_names = checkpoint.name.split('-') | ||||
|       assert len(temp_names) == 4 and temp_names[0] == 'arch' and temp_names[2] == 'seed', 'invalid checkpoint name : {:}'.format(checkpoint.name) | ||||
|       arch_indexes.add( temp_names[1] ) | ||||
|     subdir2archs[sub_dir] = sorted(list(arch_indexes)) | ||||
|     num_evaluated_arch   += len(arch_indexes) | ||||
|     # count number of seeds for each architecture | ||||
|     for arch_index in arch_indexes: | ||||
|       num_seeds[ len(list(sub_dir.glob('arch-{:}-seed-*.pth'.format(arch_index)))) ] += 1 | ||||
|   print('There are {:5d} architectures that have been evaluated ({:} in total, {:} ckps in total).'.format(num_evaluated_arch, meta_num_archs, sum(k*v for k, v in num_seeds.items()))) | ||||
|   for key in sorted( list( num_seeds.keys() ) ): print ('There are {:5d} architectures that are evaluated {:} times.'.format(num_seeds[key], key)) | ||||
|     sub_model_dirs = sorted(list(save_dir.glob("*-*-{:}".format(basestr)))) | ||||
|     print("{:} find {:} directories used to save checkpoints".format(time_string(), len(sub_model_dirs))) | ||||
|  | ||||
|   dir2ckps, dir2ckp_exists = dict(), dict() | ||||
|   start_time, epoch_time = time.time(), AverageMeter() | ||||
|   for IDX, (sub_dir, arch_indexes) in enumerate(subdir2archs.items()): | ||||
|     if basestr == 'C16-N5': | ||||
|       seeds = [777, 888, 999] | ||||
|     elif basestr == 'C16-N5-LESS': | ||||
|       seeds = [111, 777] | ||||
|     else: | ||||
|       raise ValueError('Invalid base str : {:}'.format(basestr)) | ||||
|     numrs = defaultdict(lambda: 0) | ||||
|     all_checkpoints, all_ckp_exists = [], [] | ||||
|     for arch_index in arch_indexes: | ||||
|       checkpoints = ['arch-{:}-seed-{:04d}.pth'.format(arch_index, seed) for seed in seeds] | ||||
|       ckp_exists  = [(sub_dir/x).exists() for x in checkpoints] | ||||
|       arch_index  = int(arch_index) | ||||
|       assert 0 <= arch_index < len(meta_archs), 'invalid arch-index {:} (not found in meta_archs)'.format(arch_index) | ||||
|       all_checkpoints += checkpoints | ||||
|       all_ckp_exists  += ckp_exists | ||||
|       numrs[sum(ckp_exists)] += 1 | ||||
|     dir2ckps[ str(sub_dir) ]       = all_checkpoints | ||||
|     dir2ckp_exists[ str(sub_dir) ] = all_ckp_exists | ||||
|     # measure time | ||||
|     epoch_time.update(time.time() - start_time) | ||||
|     start_time = time.time() | ||||
|     numrstr = ', '.join( ['{:}: {:03d}'.format(x, numrs[x]) for x in sorted(numrs.keys())] ) | ||||
|     print('{:} load [{:2d}/{:2d}] [{:03d} archs] [{:04d}->{:04d} ckps] {:} done, need {:}. {:}'.format(time_string(), IDX+1, len(subdir2archs), len(arch_indexes), len(all_checkpoints), sum(all_ckp_exists), sub_dir, convert_secs2time(epoch_time.avg * (len(subdir2archs)-IDX-1), True), numrstr)) | ||||
|     subdir2archs, num_evaluated_arch = collections.OrderedDict(), 0 | ||||
|     num_seeds = defaultdict(lambda: 0) | ||||
|     for index, sub_dir in enumerate(sub_model_dirs): | ||||
|         xcheckpoints = list(sub_dir.glob("arch-*-seed-*.pth")) | ||||
|         # xcheckpoints = list(sub_dir.glob('arch-*-seed-0777.pth')) + list(sub_dir.glob('arch-*-seed-0888.pth')) + list(sub_dir.glob('arch-*-seed-0999.pth')) | ||||
|         arch_indexes = set() | ||||
|         for checkpoint in xcheckpoints: | ||||
|             temp_names = checkpoint.name.split("-") | ||||
|             assert ( | ||||
|                 len(temp_names) == 4 and temp_names[0] == "arch" and temp_names[2] == "seed" | ||||
|             ), "invalid checkpoint name : {:}".format(checkpoint.name) | ||||
|             arch_indexes.add(temp_names[1]) | ||||
|         subdir2archs[sub_dir] = sorted(list(arch_indexes)) | ||||
|         num_evaluated_arch += len(arch_indexes) | ||||
|         # count number of seeds for each architecture | ||||
|         for arch_index in arch_indexes: | ||||
|             num_seeds[len(list(sub_dir.glob("arch-{:}-seed-*.pth".format(arch_index))))] += 1 | ||||
|     print( | ||||
|         "There are {:5d} architectures that have been evaluated ({:} in total, {:} ckps in total).".format( | ||||
|             num_evaluated_arch, meta_num_archs, sum(k * v for k, v in num_seeds.items()) | ||||
|         ) | ||||
|     ) | ||||
|     for key in sorted(list(num_seeds.keys())): | ||||
|         print("There are {:5d} architectures that are evaluated {:} times.".format(num_seeds[key], key)) | ||||
|  | ||||
|     dir2ckps, dir2ckp_exists = dict(), dict() | ||||
|     start_time, epoch_time = time.time(), AverageMeter() | ||||
|     for IDX, (sub_dir, arch_indexes) in enumerate(subdir2archs.items()): | ||||
|         if basestr == "C16-N5": | ||||
|             seeds = [777, 888, 999] | ||||
|         elif basestr == "C16-N5-LESS": | ||||
|             seeds = [111, 777] | ||||
|         else: | ||||
|             raise ValueError("Invalid base str : {:}".format(basestr)) | ||||
|         numrs = defaultdict(lambda: 0) | ||||
|         all_checkpoints, all_ckp_exists = [], [] | ||||
|         for arch_index in arch_indexes: | ||||
|             checkpoints = ["arch-{:}-seed-{:04d}.pth".format(arch_index, seed) for seed in seeds] | ||||
|             ckp_exists = [(sub_dir / x).exists() for x in checkpoints] | ||||
|             arch_index = int(arch_index) | ||||
|             assert 0 <= arch_index < len(meta_archs), "invalid arch-index {:} (not found in meta_archs)".format( | ||||
|                 arch_index | ||||
|             ) | ||||
|             all_checkpoints += checkpoints | ||||
|             all_ckp_exists += ckp_exists | ||||
|             numrs[sum(ckp_exists)] += 1 | ||||
|         dir2ckps[str(sub_dir)] = all_checkpoints | ||||
|         dir2ckp_exists[str(sub_dir)] = all_ckp_exists | ||||
|         # measure time | ||||
|         epoch_time.update(time.time() - start_time) | ||||
|         start_time = time.time() | ||||
|         numrstr = ", ".join(["{:}: {:03d}".format(x, numrs[x]) for x in sorted(numrs.keys())]) | ||||
|         print( | ||||
|             "{:} load [{:2d}/{:2d}] [{:03d} archs] [{:04d}->{:04d} ckps] {:} done, need {:}. {:}".format( | ||||
|                 time_string(), | ||||
|                 IDX + 1, | ||||
|                 len(subdir2archs), | ||||
|                 len(arch_indexes), | ||||
|                 len(all_checkpoints), | ||||
|                 sum(all_ckp_exists), | ||||
|                 sub_dir, | ||||
|                 convert_secs2time(epoch_time.avg * (len(subdir2archs) - IDX - 1), True), | ||||
|                 numrstr, | ||||
|             ) | ||||
|         ) | ||||
|  | ||||
|  | ||||
| if __name__ == '__main__': | ||||
| if __name__ == "__main__": | ||||
|  | ||||
|   parser = argparse.ArgumentParser(description='NAS Benchmark 201', formatter_class=argparse.ArgumentDefaultsHelpFormatter) | ||||
|   parser.add_argument('--base_save_dir', type=str, default='./output/NAS-BENCH-201-4', help='The base-name of folder to save checkpoints and log.') | ||||
|   parser.add_argument('--meta_path',     type=str, default='./output/NAS-BENCH-201-4/meta-node-4.pth', help='The meta file path.') | ||||
|   parser.add_argument('--base_str',      type=str, default='C16-N5',                   help='The basic string.') | ||||
|   args = parser.parse_args() | ||||
|     parser = argparse.ArgumentParser( | ||||
|         description="NAS Benchmark 201", formatter_class=argparse.ArgumentDefaultsHelpFormatter | ||||
|     ) | ||||
|     parser.add_argument( | ||||
|         "--base_save_dir", | ||||
|         type=str, | ||||
|         default="./output/NAS-BENCH-201-4", | ||||
|         help="The base-name of folder to save checkpoints and log.", | ||||
|     ) | ||||
|     parser.add_argument( | ||||
|         "--meta_path", type=str, default="./output/NAS-BENCH-201-4/meta-node-4.pth", help="The meta file path." | ||||
|     ) | ||||
|     parser.add_argument("--base_str", type=str, default="C16-N5", help="The basic string.") | ||||
|     args = parser.parse_args() | ||||
|  | ||||
|   save_dir = Path(args.base_save_dir) | ||||
|   meta_path = Path(args.meta_path) | ||||
|   assert save_dir.exists(),  'invalid save dir path : {:}'.format(save_dir) | ||||
|   assert meta_path.exists(), 'invalid saved meta path : {:}'.format(meta_path) | ||||
|   print ('check NAS-Bench-201 in {:}'.format(save_dir)) | ||||
|     save_dir = Path(args.base_save_dir) | ||||
|     meta_path = Path(args.meta_path) | ||||
|     assert save_dir.exists(), "invalid save dir path : {:}".format(save_dir) | ||||
|     assert meta_path.exists(), "invalid saved meta path : {:}".format(meta_path) | ||||
|     print("check NAS-Bench-201 in {:}".format(save_dir)) | ||||
|  | ||||
|   check_files(save_dir, meta_path, args.base_str) | ||||
|     check_files(save_dir, meta_path, args.base_str) | ||||
|   | ||||
| @@ -9,23 +9,23 @@ import os | ||||
| from setuptools import setup | ||||
|  | ||||
|  | ||||
| def read(fname='README.md'): | ||||
|   with open(os.path.join(os.path.dirname(__file__), fname), encoding='utf-8') as cfile: | ||||
|     return cfile.read() | ||||
| def read(fname="README.md"): | ||||
|     with open(os.path.join(os.path.dirname(__file__), fname), encoding="utf-8") as cfile: | ||||
|         return cfile.read() | ||||
|  | ||||
|  | ||||
| setup( | ||||
|     name = "nas_bench_201", | ||||
|     version = "2.0", | ||||
|     author = "Xuanyi Dong", | ||||
|     author_email = "dongxuanyi888@gmail.com", | ||||
|     description = "API for NAS-Bench-201 (a benchmark for neural architecture search).", | ||||
|     license = "MIT", | ||||
|     keywords = "NAS Dataset API DeepLearning", | ||||
|     url = "https://github.com/D-X-Y/NAS-Bench-201", | ||||
|     packages=['nas_201_api'], | ||||
|     long_description=read('README.md'), | ||||
|     long_description_content_type='text/markdown', | ||||
|     name="nas_bench_201", | ||||
|     version="2.0", | ||||
|     author="Xuanyi Dong", | ||||
|     author_email="dongxuanyi888@gmail.com", | ||||
|     description="API for NAS-Bench-201 (a benchmark for neural architecture search).", | ||||
|     license="MIT", | ||||
|     keywords="NAS Dataset API DeepLearning", | ||||
|     url="https://github.com/D-X-Y/NAS-Bench-201", | ||||
|     packages=["nas_201_api"], | ||||
|     long_description=read("README.md"), | ||||
|     long_description_content_type="text/markdown", | ||||
|     classifiers=[ | ||||
|         "Programming Language :: Python", | ||||
|         "Topic :: Database", | ||||
|   | ||||
| @@ -2,133 +2,162 @@ | ||||
| # Copyright (c) Xuanyi Dong [GitHub D-X-Y], 2019.08 # | ||||
| ##################################################### | ||||
| import time, torch | ||||
| from procedures   import prepare_seed, get_optim_scheduler | ||||
| from utils        import get_model_infos, obtain_accuracy | ||||
| from procedures import prepare_seed, get_optim_scheduler | ||||
| from utils import get_model_infos, obtain_accuracy | ||||
| from config_utils import dict2config | ||||
| from log_utils    import AverageMeter, time_string, convert_secs2time | ||||
| from models       import get_cell_based_tiny_net | ||||
| from log_utils import AverageMeter, time_string, convert_secs2time | ||||
| from models import get_cell_based_tiny_net | ||||
|  | ||||
|  | ||||
| __all__ = ['evaluate_for_seed', 'pure_evaluate'] | ||||
| __all__ = ["evaluate_for_seed", "pure_evaluate"] | ||||
|  | ||||
|  | ||||
| def pure_evaluate(xloader, network, criterion=torch.nn.CrossEntropyLoss()): | ||||
|   data_time, batch_time, batch = AverageMeter(), AverageMeter(), None | ||||
|   losses, top1, top5 = AverageMeter(), AverageMeter(), AverageMeter() | ||||
|   latencies = [] | ||||
|   network.eval() | ||||
|   with torch.no_grad(): | ||||
|     end = time.time() | ||||
|     for i, (inputs, targets) in enumerate(xloader): | ||||
|       targets = targets.cuda(non_blocking=True) | ||||
|       inputs  = inputs.cuda(non_blocking=True) | ||||
|       data_time.update(time.time() - end) | ||||
|       # forward | ||||
|       features, logits = network(inputs) | ||||
|       loss             = criterion(logits, targets) | ||||
|       batch_time.update(time.time() - end) | ||||
|       if batch is None or batch == inputs.size(0): | ||||
|         batch = inputs.size(0) | ||||
|         latencies.append( batch_time.val - data_time.val ) | ||||
|       # record loss and accuracy | ||||
|       prec1, prec5 = obtain_accuracy(logits.data, targets.data, topk=(1, 5)) | ||||
|       losses.update(loss.item(),  inputs.size(0)) | ||||
|       top1.update  (prec1.item(), inputs.size(0)) | ||||
|       top5.update  (prec5.item(), inputs.size(0)) | ||||
|       end = time.time() | ||||
|   if len(latencies) > 2: latencies = latencies[1:] | ||||
|   return losses.avg, top1.avg, top5.avg, latencies | ||||
|  | ||||
|     data_time, batch_time, batch = AverageMeter(), AverageMeter(), None | ||||
|     losses, top1, top5 = AverageMeter(), AverageMeter(), AverageMeter() | ||||
|     latencies = [] | ||||
|     network.eval() | ||||
|     with torch.no_grad(): | ||||
|         end = time.time() | ||||
|         for i, (inputs, targets) in enumerate(xloader): | ||||
|             targets = targets.cuda(non_blocking=True) | ||||
|             inputs = inputs.cuda(non_blocking=True) | ||||
|             data_time.update(time.time() - end) | ||||
|             # forward | ||||
|             features, logits = network(inputs) | ||||
|             loss = criterion(logits, targets) | ||||
|             batch_time.update(time.time() - end) | ||||
|             if batch is None or batch == inputs.size(0): | ||||
|                 batch = inputs.size(0) | ||||
|                 latencies.append(batch_time.val - data_time.val) | ||||
|             # record loss and accuracy | ||||
|             prec1, prec5 = obtain_accuracy(logits.data, targets.data, topk=(1, 5)) | ||||
|             losses.update(loss.item(), inputs.size(0)) | ||||
|             top1.update(prec1.item(), inputs.size(0)) | ||||
|             top5.update(prec5.item(), inputs.size(0)) | ||||
|             end = time.time() | ||||
|     if len(latencies) > 2: | ||||
|         latencies = latencies[1:] | ||||
|     return losses.avg, top1.avg, top5.avg, latencies | ||||
|  | ||||
|  | ||||
| def procedure(xloader, network, criterion, scheduler, optimizer, mode): | ||||
|   losses, top1, top5 = AverageMeter(), AverageMeter(), AverageMeter() | ||||
|   if mode == 'train'  : network.train() | ||||
|   elif mode == 'valid': network.eval() | ||||
|   else: raise ValueError("The mode is not right : {:}".format(mode)) | ||||
|     losses, top1, top5 = AverageMeter(), AverageMeter(), AverageMeter() | ||||
|     if mode == "train": | ||||
|         network.train() | ||||
|     elif mode == "valid": | ||||
|         network.eval() | ||||
|     else: | ||||
|         raise ValueError("The mode is not right : {:}".format(mode)) | ||||
|  | ||||
|   data_time, batch_time, end = AverageMeter(), AverageMeter(), time.time() | ||||
|   for i, (inputs, targets) in enumerate(xloader): | ||||
|     if mode == 'train': scheduler.update(None, 1.0 * i / len(xloader)) | ||||
|  | ||||
|     targets = targets.cuda(non_blocking=True) | ||||
|     if mode == 'train': optimizer.zero_grad() | ||||
|     # forward | ||||
|     features, logits = network(inputs) | ||||
|     loss             = criterion(logits, targets) | ||||
|     # backward | ||||
|     if mode == 'train': | ||||
|       loss.backward() | ||||
|       optimizer.step() | ||||
|     # record loss and accuracy | ||||
|     prec1, prec5 = obtain_accuracy(logits.data, targets.data, topk=(1, 5)) | ||||
|     losses.update(loss.item(),  inputs.size(0)) | ||||
|     top1.update  (prec1.item(), inputs.size(0)) | ||||
|     top5.update  (prec5.item(), inputs.size(0)) | ||||
|     # count time | ||||
|     batch_time.update(time.time() - end) | ||||
|     end = time.time() | ||||
|   return losses.avg, top1.avg, top5.avg, batch_time.sum | ||||
|     data_time, batch_time, end = AverageMeter(), AverageMeter(), time.time() | ||||
|     for i, (inputs, targets) in enumerate(xloader): | ||||
|         if mode == "train": | ||||
|             scheduler.update(None, 1.0 * i / len(xloader)) | ||||
|  | ||||
|         targets = targets.cuda(non_blocking=True) | ||||
|         if mode == "train": | ||||
|             optimizer.zero_grad() | ||||
|         # forward | ||||
|         features, logits = network(inputs) | ||||
|         loss = criterion(logits, targets) | ||||
|         # backward | ||||
|         if mode == "train": | ||||
|             loss.backward() | ||||
|             optimizer.step() | ||||
|         # record loss and accuracy | ||||
|         prec1, prec5 = obtain_accuracy(logits.data, targets.data, topk=(1, 5)) | ||||
|         losses.update(loss.item(), inputs.size(0)) | ||||
|         top1.update(prec1.item(), inputs.size(0)) | ||||
|         top5.update(prec5.item(), inputs.size(0)) | ||||
|         # count time | ||||
|         batch_time.update(time.time() - end) | ||||
|         end = time.time() | ||||
|     return losses.avg, top1.avg, top5.avg, batch_time.sum | ||||
|  | ||||
|  | ||||
| def evaluate_for_seed(arch_config, config, arch, train_loader, valid_loaders, seed, logger): | ||||
|  | ||||
|   prepare_seed(seed) # random seed | ||||
|   net = get_cell_based_tiny_net(dict2config({'name': 'infer.tiny', | ||||
|                                              'C': arch_config['channel'], 'N': arch_config['num_cells'], | ||||
|                                              'genotype': arch, 'num_classes': config.class_num} | ||||
|                                             , None) | ||||
|                                  ) | ||||
|   #net = TinyNetwork(arch_config['channel'], arch_config['num_cells'], arch, config.class_num) | ||||
|   flop, param  = get_model_infos(net, config.xshape) | ||||
|   logger.log('Network : {:}'.format(net.get_message()), False) | ||||
|   logger.log('{:} Seed-------------------------- {:} --------------------------'.format(time_string(), seed)) | ||||
|   logger.log('FLOP = {:} MB, Param = {:} MB'.format(flop, param)) | ||||
|   # train and valid | ||||
|   optimizer, scheduler, criterion = get_optim_scheduler(net.parameters(), config) | ||||
|   network, criterion = torch.nn.DataParallel(net).cuda(), criterion.cuda() | ||||
|   # start training | ||||
|   start_time, epoch_time, total_epoch = time.time(), AverageMeter(), config.epochs + config.warmup | ||||
|   train_losses, train_acc1es, train_acc5es, valid_losses, valid_acc1es, valid_acc5es = {}, {}, {}, {}, {}, {} | ||||
|   train_times , valid_times = {}, {} | ||||
|   for epoch in range(total_epoch): | ||||
|     scheduler.update(epoch, 0.0) | ||||
|     prepare_seed(seed)  # random seed | ||||
|     net = get_cell_based_tiny_net( | ||||
|         dict2config( | ||||
|             { | ||||
|                 "name": "infer.tiny", | ||||
|                 "C": arch_config["channel"], | ||||
|                 "N": arch_config["num_cells"], | ||||
|                 "genotype": arch, | ||||
|                 "num_classes": config.class_num, | ||||
|             }, | ||||
|             None, | ||||
|         ) | ||||
|     ) | ||||
|     # net = TinyNetwork(arch_config['channel'], arch_config['num_cells'], arch, config.class_num) | ||||
|     flop, param = get_model_infos(net, config.xshape) | ||||
|     logger.log("Network : {:}".format(net.get_message()), False) | ||||
|     logger.log("{:} Seed-------------------------- {:} --------------------------".format(time_string(), seed)) | ||||
|     logger.log("FLOP = {:} MB, Param = {:} MB".format(flop, param)) | ||||
|     # train and valid | ||||
|     optimizer, scheduler, criterion = get_optim_scheduler(net.parameters(), config) | ||||
|     network, criterion = torch.nn.DataParallel(net).cuda(), criterion.cuda() | ||||
|     # start training | ||||
|     start_time, epoch_time, total_epoch = time.time(), AverageMeter(), config.epochs + config.warmup | ||||
|     train_losses, train_acc1es, train_acc5es, valid_losses, valid_acc1es, valid_acc5es = {}, {}, {}, {}, {}, {} | ||||
|     train_times, valid_times = {}, {} | ||||
|     for epoch in range(total_epoch): | ||||
|         scheduler.update(epoch, 0.0) | ||||
|  | ||||
|     train_loss, train_acc1, train_acc5, train_tm = procedure(train_loader, network, criterion, scheduler, optimizer, 'train') | ||||
|     train_losses[epoch] = train_loss | ||||
|     train_acc1es[epoch] = train_acc1  | ||||
|     train_acc5es[epoch] = train_acc5 | ||||
|     train_times [epoch] = train_tm | ||||
|     with torch.no_grad(): | ||||
|       for key, xloder in valid_loaders.items(): | ||||
|         valid_loss, valid_acc1, valid_acc5, valid_tm = procedure(xloder  , network, criterion,      None,      None, 'valid') | ||||
|         valid_losses['{:}@{:}'.format(key,epoch)] = valid_loss | ||||
|         valid_acc1es['{:}@{:}'.format(key,epoch)] = valid_acc1  | ||||
|         valid_acc5es['{:}@{:}'.format(key,epoch)] = valid_acc5 | ||||
|         valid_times ['{:}@{:}'.format(key,epoch)] = valid_tm | ||||
|         train_loss, train_acc1, train_acc5, train_tm = procedure( | ||||
|             train_loader, network, criterion, scheduler, optimizer, "train" | ||||
|         ) | ||||
|         train_losses[epoch] = train_loss | ||||
|         train_acc1es[epoch] = train_acc1 | ||||
|         train_acc5es[epoch] = train_acc5 | ||||
|         train_times[epoch] = train_tm | ||||
|         with torch.no_grad(): | ||||
|             for key, xloder in valid_loaders.items(): | ||||
|                 valid_loss, valid_acc1, valid_acc5, valid_tm = procedure( | ||||
|                     xloder, network, criterion, None, None, "valid" | ||||
|                 ) | ||||
|                 valid_losses["{:}@{:}".format(key, epoch)] = valid_loss | ||||
|                 valid_acc1es["{:}@{:}".format(key, epoch)] = valid_acc1 | ||||
|                 valid_acc5es["{:}@{:}".format(key, epoch)] = valid_acc5 | ||||
|                 valid_times["{:}@{:}".format(key, epoch)] = valid_tm | ||||
|  | ||||
|     # measure elapsed time | ||||
|     epoch_time.update(time.time() - start_time) | ||||
|     start_time = time.time() | ||||
|     need_time = 'Time Left: {:}'.format( convert_secs2time(epoch_time.avg * (total_epoch-epoch-1), True) ) | ||||
|     logger.log('{:} {:} epoch={:03d}/{:03d} :: Train [loss={:.5f}, acc@1={:.2f}%, acc@5={:.2f}%] Valid [loss={:.5f}, acc@1={:.2f}%, acc@5={:.2f}%]'.format(time_string(), need_time, epoch, total_epoch, train_loss, train_acc1, train_acc5, valid_loss, valid_acc1, valid_acc5)) | ||||
|   info_seed = {'flop' : flop, | ||||
|                'param': param, | ||||
|                'channel'     : arch_config['channel'], | ||||
|                'num_cells'   : arch_config['num_cells'], | ||||
|                'config'      : config._asdict(), | ||||
|                'total_epoch' : total_epoch , | ||||
|                'train_losses': train_losses, | ||||
|                'train_acc1es': train_acc1es, | ||||
|                'train_acc5es': train_acc5es, | ||||
|                'train_times' : train_times, | ||||
|                'valid_losses': valid_losses, | ||||
|                'valid_acc1es': valid_acc1es, | ||||
|                'valid_acc5es': valid_acc5es, | ||||
|                'valid_times' : valid_times, | ||||
|                'net_state_dict': net.state_dict(), | ||||
|                'net_string'  : '{:}'.format(net), | ||||
|                'finish-train': True | ||||
|               } | ||||
|   return info_seed | ||||
|         # measure elapsed time | ||||
|         epoch_time.update(time.time() - start_time) | ||||
|         start_time = time.time() | ||||
|         need_time = "Time Left: {:}".format(convert_secs2time(epoch_time.avg * (total_epoch - epoch - 1), True)) | ||||
|         logger.log( | ||||
|             "{:} {:} epoch={:03d}/{:03d} :: Train [loss={:.5f}, acc@1={:.2f}%, acc@5={:.2f}%] Valid [loss={:.5f}, acc@1={:.2f}%, acc@5={:.2f}%]".format( | ||||
|                 time_string(), | ||||
|                 need_time, | ||||
|                 epoch, | ||||
|                 total_epoch, | ||||
|                 train_loss, | ||||
|                 train_acc1, | ||||
|                 train_acc5, | ||||
|                 valid_loss, | ||||
|                 valid_acc1, | ||||
|                 valid_acc5, | ||||
|             ) | ||||
|         ) | ||||
|     info_seed = { | ||||
|         "flop": flop, | ||||
|         "param": param, | ||||
|         "channel": arch_config["channel"], | ||||
|         "num_cells": arch_config["num_cells"], | ||||
|         "config": config._asdict(), | ||||
|         "total_epoch": total_epoch, | ||||
|         "train_losses": train_losses, | ||||
|         "train_acc1es": train_acc1es, | ||||
|         "train_acc5es": train_acc5es, | ||||
|         "train_times": train_times, | ||||
|         "valid_losses": valid_losses, | ||||
|         "valid_acc1es": valid_acc1es, | ||||
|         "valid_acc5es": valid_acc5es, | ||||
|         "valid_times": valid_times, | ||||
|         "net_state_dict": net.state_dict(), | ||||
|         "net_string": "{:}".format(net), | ||||
|         "finish-train": True, | ||||
|     } | ||||
|     return info_seed | ||||
|   | ||||
| @@ -4,313 +4,492 @@ | ||||
| # Copyright (c) Xuanyi Dong [GitHub D-X-Y], 2019.08           # | ||||
| ############################################################### | ||||
| import os, sys, time, torch, random, argparse | ||||
| from PIL     import ImageFile | ||||
| from PIL import ImageFile | ||||
|  | ||||
| ImageFile.LOAD_TRUNCATED_IMAGES = True | ||||
| from copy    import deepcopy | ||||
| from copy import deepcopy | ||||
| from pathlib import Path | ||||
|  | ||||
| lib_dir = (Path(__file__).parent / '..' / '..' / 'lib').resolve() | ||||
| if str(lib_dir) not in sys.path: sys.path.insert(0, str(lib_dir)) | ||||
| lib_dir = (Path(__file__).parent / ".." / ".." / "lib").resolve() | ||||
| if str(lib_dir) not in sys.path: | ||||
|     sys.path.insert(0, str(lib_dir)) | ||||
| from config_utils import load_config | ||||
| from procedures   import save_checkpoint, copy_checkpoint | ||||
| from procedures   import get_machine_info | ||||
| from datasets     import get_datasets | ||||
| from log_utils    import Logger, AverageMeter, time_string, convert_secs2time | ||||
| from models       import CellStructure, CellArchitectures, get_search_spaces | ||||
| from functions    import evaluate_for_seed | ||||
| from procedures import save_checkpoint, copy_checkpoint | ||||
| from procedures import get_machine_info | ||||
| from datasets import get_datasets | ||||
| from log_utils import Logger, AverageMeter, time_string, convert_secs2time | ||||
| from models import CellStructure, CellArchitectures, get_search_spaces | ||||
| from functions import evaluate_for_seed | ||||
|  | ||||
|  | ||||
| def evaluate_all_datasets(arch, datasets, xpaths, splits, use_less, seed, arch_config, workers, logger): | ||||
|   machine_info, arch_config = get_machine_info(), deepcopy(arch_config) | ||||
|   all_infos = {'info': machine_info} | ||||
|   all_dataset_keys = [] | ||||
|   # look all the datasets | ||||
|   for dataset, xpath, split in zip(datasets, xpaths, splits): | ||||
|     # train valid data | ||||
|     train_data, valid_data, xshape, class_num = get_datasets(dataset, xpath, -1) | ||||
|     # load the configuration | ||||
|     if dataset == 'cifar10' or dataset == 'cifar100': | ||||
|       if use_less: config_path = 'configs/nas-benchmark/LESS.config' | ||||
|       else       : config_path = 'configs/nas-benchmark/CIFAR.config' | ||||
|       split_info  = load_config('configs/nas-benchmark/cifar-split.txt', None, None) | ||||
|     elif dataset.startswith('ImageNet16'): | ||||
|       if use_less: config_path = 'configs/nas-benchmark/LESS.config' | ||||
|       else       : config_path = 'configs/nas-benchmark/ImageNet-16.config' | ||||
|       split_info  = load_config('configs/nas-benchmark/{:}-split.txt'.format(dataset), None, None) | ||||
|     machine_info, arch_config = get_machine_info(), deepcopy(arch_config) | ||||
|     all_infos = {"info": machine_info} | ||||
|     all_dataset_keys = [] | ||||
|     # look all the datasets | ||||
|     for dataset, xpath, split in zip(datasets, xpaths, splits): | ||||
|         # train valid data | ||||
|         train_data, valid_data, xshape, class_num = get_datasets(dataset, xpath, -1) | ||||
|         # load the configuration | ||||
|         if dataset == "cifar10" or dataset == "cifar100": | ||||
|             if use_less: | ||||
|                 config_path = "configs/nas-benchmark/LESS.config" | ||||
|             else: | ||||
|                 config_path = "configs/nas-benchmark/CIFAR.config" | ||||
|             split_info = load_config("configs/nas-benchmark/cifar-split.txt", None, None) | ||||
|         elif dataset.startswith("ImageNet16"): | ||||
|             if use_less: | ||||
|                 config_path = "configs/nas-benchmark/LESS.config" | ||||
|             else: | ||||
|                 config_path = "configs/nas-benchmark/ImageNet-16.config" | ||||
|             split_info = load_config("configs/nas-benchmark/{:}-split.txt".format(dataset), None, None) | ||||
|         else: | ||||
|             raise ValueError("invalid dataset : {:}".format(dataset)) | ||||
|         config = load_config(config_path, {"class_num": class_num, "xshape": xshape}, logger) | ||||
|         # check whether use splited validation set | ||||
|         if bool(split): | ||||
|             assert dataset == "cifar10" | ||||
|             ValLoaders = { | ||||
|                 "ori-test": torch.utils.data.DataLoader( | ||||
|                     valid_data, batch_size=config.batch_size, shuffle=False, num_workers=workers, pin_memory=True | ||||
|                 ) | ||||
|             } | ||||
|             assert len(train_data) == len(split_info.train) + len( | ||||
|                 split_info.valid | ||||
|             ), "invalid length : {:} vs {:} + {:}".format(len(train_data), len(split_info.train), len(split_info.valid)) | ||||
|             train_data_v2 = deepcopy(train_data) | ||||
|             train_data_v2.transform = valid_data.transform | ||||
|             valid_data = train_data_v2 | ||||
|             # data loader | ||||
|             train_loader = torch.utils.data.DataLoader( | ||||
|                 train_data, | ||||
|                 batch_size=config.batch_size, | ||||
|                 sampler=torch.utils.data.sampler.SubsetRandomSampler(split_info.train), | ||||
|                 num_workers=workers, | ||||
|                 pin_memory=True, | ||||
|             ) | ||||
|             valid_loader = torch.utils.data.DataLoader( | ||||
|                 valid_data, | ||||
|                 batch_size=config.batch_size, | ||||
|                 sampler=torch.utils.data.sampler.SubsetRandomSampler(split_info.valid), | ||||
|                 num_workers=workers, | ||||
|                 pin_memory=True, | ||||
|             ) | ||||
|             ValLoaders["x-valid"] = valid_loader | ||||
|         else: | ||||
|             # data loader | ||||
|             train_loader = torch.utils.data.DataLoader( | ||||
|                 train_data, batch_size=config.batch_size, shuffle=True, num_workers=workers, pin_memory=True | ||||
|             ) | ||||
|             valid_loader = torch.utils.data.DataLoader( | ||||
|                 valid_data, batch_size=config.batch_size, shuffle=False, num_workers=workers, pin_memory=True | ||||
|             ) | ||||
|             if dataset == "cifar10": | ||||
|                 ValLoaders = {"ori-test": valid_loader} | ||||
|             elif dataset == "cifar100": | ||||
|                 cifar100_splits = load_config("configs/nas-benchmark/cifar100-test-split.txt", None, None) | ||||
|                 ValLoaders = { | ||||
|                     "ori-test": valid_loader, | ||||
|                     "x-valid": torch.utils.data.DataLoader( | ||||
|                         valid_data, | ||||
|                         batch_size=config.batch_size, | ||||
|                         sampler=torch.utils.data.sampler.SubsetRandomSampler(cifar100_splits.xvalid), | ||||
|                         num_workers=workers, | ||||
|                         pin_memory=True, | ||||
|                     ), | ||||
|                     "x-test": torch.utils.data.DataLoader( | ||||
|                         valid_data, | ||||
|                         batch_size=config.batch_size, | ||||
|                         sampler=torch.utils.data.sampler.SubsetRandomSampler(cifar100_splits.xtest), | ||||
|                         num_workers=workers, | ||||
|                         pin_memory=True, | ||||
|                     ), | ||||
|                 } | ||||
|             elif dataset == "ImageNet16-120": | ||||
|                 imagenet16_splits = load_config("configs/nas-benchmark/imagenet-16-120-test-split.txt", None, None) | ||||
|                 ValLoaders = { | ||||
|                     "ori-test": valid_loader, | ||||
|                     "x-valid": torch.utils.data.DataLoader( | ||||
|                         valid_data, | ||||
|                         batch_size=config.batch_size, | ||||
|                         sampler=torch.utils.data.sampler.SubsetRandomSampler(imagenet16_splits.xvalid), | ||||
|                         num_workers=workers, | ||||
|                         pin_memory=True, | ||||
|                     ), | ||||
|                     "x-test": torch.utils.data.DataLoader( | ||||
|                         valid_data, | ||||
|                         batch_size=config.batch_size, | ||||
|                         sampler=torch.utils.data.sampler.SubsetRandomSampler(imagenet16_splits.xtest), | ||||
|                         num_workers=workers, | ||||
|                         pin_memory=True, | ||||
|                     ), | ||||
|                 } | ||||
|             else: | ||||
|                 raise ValueError("invalid dataset : {:}".format(dataset)) | ||||
|  | ||||
|         dataset_key = "{:}".format(dataset) | ||||
|         if bool(split): | ||||
|             dataset_key = dataset_key + "-valid" | ||||
|         logger.log( | ||||
|             "Evaluate ||||||| {:10s} ||||||| Train-Num={:}, Valid-Num={:}, Train-Loader-Num={:}, Valid-Loader-Num={:}, batch size={:}".format( | ||||
|                 dataset_key, len(train_data), len(valid_data), len(train_loader), len(valid_loader), config.batch_size | ||||
|             ) | ||||
|         ) | ||||
|         logger.log("Evaluate ||||||| {:10s} ||||||| Config={:}".format(dataset_key, config)) | ||||
|         for key, value in ValLoaders.items(): | ||||
|             logger.log("Evaluate ---->>>> {:10s} with {:} batchs".format(key, len(value))) | ||||
|         results = evaluate_for_seed(arch_config, config, arch, train_loader, ValLoaders, seed, logger) | ||||
|         all_infos[dataset_key] = results | ||||
|         all_dataset_keys.append(dataset_key) | ||||
|     all_infos["all_dataset_keys"] = all_dataset_keys | ||||
|     return all_infos | ||||
|  | ||||
|  | ||||
| def main( | ||||
|     save_dir, workers, datasets, xpaths, splits, use_less, srange, arch_index, seeds, cover_mode, meta_info, arch_config | ||||
| ): | ||||
|     assert torch.cuda.is_available(), "CUDA is not available." | ||||
|     torch.backends.cudnn.enabled = True | ||||
|     # torch.backends.cudnn.benchmark = True | ||||
|     torch.backends.cudnn.deterministic = True | ||||
|     torch.set_num_threads(workers) | ||||
|  | ||||
|     assert len(srange) == 2 and 0 <= srange[0] <= srange[1], "invalid srange : {:}".format(srange) | ||||
|  | ||||
|     if use_less: | ||||
|         sub_dir = Path(save_dir) / "{:06d}-{:06d}-C{:}-N{:}-LESS".format( | ||||
|             srange[0], srange[1], arch_config["channel"], arch_config["num_cells"] | ||||
|         ) | ||||
|     else: | ||||
|       raise ValueError('invalid dataset : {:}'.format(dataset)) | ||||
|     config = load_config(config_path, \ | ||||
|                             {'class_num': class_num, | ||||
|                              'xshape'   : xshape}, \ | ||||
|                             logger) | ||||
|     # check whether use splited validation set | ||||
|     if bool(split): | ||||
|       assert dataset == 'cifar10' | ||||
|       ValLoaders = {'ori-test': torch.utils.data.DataLoader(valid_data, batch_size=config.batch_size, shuffle=False, num_workers=workers, pin_memory=True)} | ||||
|       assert len(train_data) == len(split_info.train) + len(split_info.valid), 'invalid length : {:} vs {:} + {:}'.format(len(train_data), len(split_info.train), len(split_info.valid)) | ||||
|       train_data_v2 = deepcopy(train_data) | ||||
|       train_data_v2.transform = valid_data.transform | ||||
|       valid_data = train_data_v2 | ||||
|       # data loader | ||||
|       train_loader = torch.utils.data.DataLoader(train_data, batch_size=config.batch_size, sampler=torch.utils.data.sampler.SubsetRandomSampler(split_info.train), num_workers=workers, pin_memory=True) | ||||
|       valid_loader = torch.utils.data.DataLoader(valid_data, batch_size=config.batch_size, sampler=torch.utils.data.sampler.SubsetRandomSampler(split_info.valid), num_workers=workers, pin_memory=True) | ||||
|       ValLoaders['x-valid'] = valid_loader | ||||
|         sub_dir = Path(save_dir) / "{:06d}-{:06d}-C{:}-N{:}".format( | ||||
|             srange[0], srange[1], arch_config["channel"], arch_config["num_cells"] | ||||
|         ) | ||||
|     logger = Logger(str(sub_dir), 0, False) | ||||
|  | ||||
|     all_archs = meta_info["archs"] | ||||
|     assert srange[1] < meta_info["total"], "invalid range : {:}-{:} vs. {:}".format( | ||||
|         srange[0], srange[1], meta_info["total"] | ||||
|     ) | ||||
|     assert arch_index == -1 or srange[0] <= arch_index <= srange[1], "invalid range : {:} vs. {:} vs. {:}".format( | ||||
|         srange[0], arch_index, srange[1] | ||||
|     ) | ||||
|     if arch_index == -1: | ||||
|         to_evaluate_indexes = list(range(srange[0], srange[1] + 1)) | ||||
|     else: | ||||
|       # data loader | ||||
|       train_loader = torch.utils.data.DataLoader(train_data, batch_size=config.batch_size, shuffle=True , num_workers=workers, pin_memory=True) | ||||
|       valid_loader = torch.utils.data.DataLoader(valid_data, batch_size=config.batch_size, shuffle=False, num_workers=workers, pin_memory=True) | ||||
|       if dataset == 'cifar10': | ||||
|         ValLoaders = {'ori-test': valid_loader} | ||||
|       elif dataset == 'cifar100': | ||||
|         cifar100_splits = load_config('configs/nas-benchmark/cifar100-test-split.txt', None, None) | ||||
|         ValLoaders = {'ori-test': valid_loader, | ||||
|                       'x-valid' : torch.utils.data.DataLoader(valid_data, batch_size=config.batch_size, sampler=torch.utils.data.sampler.SubsetRandomSampler(cifar100_splits.xvalid), num_workers=workers, pin_memory=True), | ||||
|                       'x-test'  : torch.utils.data.DataLoader(valid_data, batch_size=config.batch_size, sampler=torch.utils.data.sampler.SubsetRandomSampler(cifar100_splits.xtest ), num_workers=workers, pin_memory=True) | ||||
|                      } | ||||
|       elif dataset == 'ImageNet16-120': | ||||
|         imagenet16_splits = load_config('configs/nas-benchmark/imagenet-16-120-test-split.txt', None, None) | ||||
|         ValLoaders = {'ori-test': valid_loader, | ||||
|                       'x-valid' : torch.utils.data.DataLoader(valid_data, batch_size=config.batch_size, sampler=torch.utils.data.sampler.SubsetRandomSampler(imagenet16_splits.xvalid), num_workers=workers, pin_memory=True), | ||||
|                       'x-test'  : torch.utils.data.DataLoader(valid_data, batch_size=config.batch_size, sampler=torch.utils.data.sampler.SubsetRandomSampler(imagenet16_splits.xtest ), num_workers=workers, pin_memory=True) | ||||
|                      } | ||||
|       else: | ||||
|         raise ValueError('invalid dataset : {:}'.format(dataset)) | ||||
|         to_evaluate_indexes = [arch_index] | ||||
|     logger.log("xargs : seeds      = {:}".format(seeds)) | ||||
|     logger.log("xargs : arch_index = {:}".format(arch_index)) | ||||
|     logger.log("xargs : cover_mode = {:}".format(cover_mode)) | ||||
|     logger.log("-" * 100) | ||||
|  | ||||
|     dataset_key = '{:}'.format(dataset) | ||||
|     if bool(split): dataset_key = dataset_key + '-valid' | ||||
|     logger.log('Evaluate ||||||| {:10s} ||||||| Train-Num={:}, Valid-Num={:}, Train-Loader-Num={:}, Valid-Loader-Num={:}, batch size={:}'.format(dataset_key, len(train_data), len(valid_data), len(train_loader), len(valid_loader), config.batch_size)) | ||||
|     logger.log('Evaluate ||||||| {:10s} ||||||| Config={:}'.format(dataset_key, config)) | ||||
|     for key, value in ValLoaders.items(): | ||||
|       logger.log('Evaluate ---->>>> {:10s} with {:} batchs'.format(key, len(value))) | ||||
|     results = evaluate_for_seed(arch_config, config, arch, train_loader, ValLoaders, seed, logger) | ||||
|     all_infos[dataset_key] = results | ||||
|     all_dataset_keys.append( dataset_key ) | ||||
|   all_infos['all_dataset_keys'] = all_dataset_keys | ||||
|   return all_infos | ||||
|     logger.log( | ||||
|         "Start evaluating range =: {:06d} vs. {:06d} vs. {:06d} / {:06d} with cover-mode={:}".format( | ||||
|             srange[0], arch_index, srange[1], meta_info["total"], cover_mode | ||||
|         ) | ||||
|     ) | ||||
|     for i, (dataset, xpath, split) in enumerate(zip(datasets, xpaths, splits)): | ||||
|         logger.log( | ||||
|             "--->>> Evaluate {:}/{:} : dataset={:9s}, path={:}, split={:}".format( | ||||
|                 i, len(datasets), dataset, xpath, split | ||||
|             ) | ||||
|         ) | ||||
|     logger.log("--->>> architecture config : {:}".format(arch_config)) | ||||
|  | ||||
|     start_time, epoch_time = time.time(), AverageMeter() | ||||
|     for i, index in enumerate(to_evaluate_indexes): | ||||
|         arch = all_archs[index] | ||||
|         logger.log( | ||||
|             "\n{:} evaluate {:06d}/{:06d} ({:06d}/{:06d})-th architecture [seeds={:}] {:}".format( | ||||
|                 "-" * 15, i, len(to_evaluate_indexes), index, meta_info["total"], seeds, "-" * 15 | ||||
|             ) | ||||
|         ) | ||||
|         # logger.log('{:} {:} {:}'.format('-'*15, arch.tostr(), '-'*15)) | ||||
|         logger.log("{:} {:} {:}".format("-" * 15, arch, "-" * 15)) | ||||
|  | ||||
| def main(save_dir, workers, datasets, xpaths, splits, use_less, srange, arch_index, seeds, cover_mode, meta_info, arch_config): | ||||
|   assert torch.cuda.is_available(), 'CUDA is not available.' | ||||
|   torch.backends.cudnn.enabled   = True | ||||
|   #torch.backends.cudnn.benchmark = True | ||||
|   torch.backends.cudnn.deterministic = True | ||||
|   torch.set_num_threads( workers ) | ||||
|         # test this arch on different datasets with different seeds | ||||
|         has_continue = False | ||||
|         for seed in seeds: | ||||
|             to_save_name = sub_dir / "arch-{:06d}-seed-{:04d}.pth".format(index, seed) | ||||
|             if to_save_name.exists(): | ||||
|                 if cover_mode: | ||||
|                     logger.log("Find existing file : {:}, remove it before evaluation".format(to_save_name)) | ||||
|                     os.remove(str(to_save_name)) | ||||
|                 else: | ||||
|                     logger.log("Find existing file : {:}, skip this evaluation".format(to_save_name)) | ||||
|                     has_continue = True | ||||
|                     continue | ||||
|             results = evaluate_all_datasets( | ||||
|                 CellStructure.str2structure(arch), | ||||
|                 datasets, | ||||
|                 xpaths, | ||||
|                 splits, | ||||
|                 use_less, | ||||
|                 seed, | ||||
|                 arch_config, | ||||
|                 workers, | ||||
|                 logger, | ||||
|             ) | ||||
|             torch.save(results, to_save_name) | ||||
|             logger.log( | ||||
|                 "{:} --evaluate-- {:06d}/{:06d} ({:06d}/{:06d})-th seed={:} done, save into {:}".format( | ||||
|                     "-" * 15, i, len(to_evaluate_indexes), index, meta_info["total"], seed, to_save_name | ||||
|                 ) | ||||
|             ) | ||||
|         # measure elapsed time | ||||
|         if not has_continue: | ||||
|             epoch_time.update(time.time() - start_time) | ||||
|         start_time = time.time() | ||||
|         need_time = "Time Left: {:}".format( | ||||
|             convert_secs2time(epoch_time.avg * (len(to_evaluate_indexes) - i - 1), True) | ||||
|         ) | ||||
|         logger.log("This arch costs : {:}".format(convert_secs2time(epoch_time.val, True))) | ||||
|         logger.log("{:}".format("*" * 100)) | ||||
|         logger.log( | ||||
|             "{:}   {:74s}   {:}".format( | ||||
|                 "*" * 10, | ||||
|                 "{:06d}/{:06d} ({:06d}/{:06d})-th done, left {:}".format( | ||||
|                     i, len(to_evaluate_indexes), index, meta_info["total"], need_time | ||||
|                 ), | ||||
|                 "*" * 10, | ||||
|             ) | ||||
|         ) | ||||
|         logger.log("{:}".format("*" * 100)) | ||||
|  | ||||
|   assert len(srange) == 2 and 0 <= srange[0] <= srange[1], 'invalid srange : {:}'.format(srange) | ||||
|    | ||||
|   if use_less: | ||||
|     sub_dir = Path(save_dir) / '{:06d}-{:06d}-C{:}-N{:}-LESS'.format(srange[0], srange[1], arch_config['channel'], arch_config['num_cells']) | ||||
|   else: | ||||
|     sub_dir = Path(save_dir) / '{:06d}-{:06d}-C{:}-N{:}'.format(srange[0], srange[1], arch_config['channel'], arch_config['num_cells']) | ||||
|   logger  = Logger(str(sub_dir), 0, False) | ||||
|  | ||||
|   all_archs = meta_info['archs'] | ||||
|   assert srange[1] < meta_info['total'], 'invalid range : {:}-{:} vs. {:}'.format(srange[0], srange[1], meta_info['total']) | ||||
|   assert arch_index == -1 or srange[0] <= arch_index <= srange[1], 'invalid range : {:} vs. {:} vs. {:}'.format(srange[0], arch_index, srange[1]) | ||||
|   if arch_index == -1: | ||||
|     to_evaluate_indexes = list(range(srange[0], srange[1]+1)) | ||||
|   else: | ||||
|     to_evaluate_indexes = [arch_index] | ||||
|   logger.log('xargs : seeds      = {:}'.format(seeds)) | ||||
|   logger.log('xargs : arch_index = {:}'.format(arch_index)) | ||||
|   logger.log('xargs : cover_mode = {:}'.format(cover_mode)) | ||||
|   logger.log('-'*100) | ||||
|  | ||||
|   logger.log('Start evaluating range =: {:06d} vs. {:06d} vs. {:06d} / {:06d} with cover-mode={:}'.format(srange[0], arch_index, srange[1], meta_info['total'], cover_mode)) | ||||
|   for i, (dataset, xpath, split) in enumerate(zip(datasets, xpaths, splits)): | ||||
|     logger.log('--->>> Evaluate {:}/{:} : dataset={:9s}, path={:}, split={:}'.format(i, len(datasets), dataset, xpath, split)) | ||||
|   logger.log('--->>> architecture config : {:}'.format(arch_config)) | ||||
|    | ||||
|  | ||||
|   start_time, epoch_time = time.time(), AverageMeter() | ||||
|   for i, index in enumerate(to_evaluate_indexes): | ||||
|     arch = all_archs[index] | ||||
|     logger.log('\n{:} evaluate {:06d}/{:06d} ({:06d}/{:06d})-th architecture [seeds={:}] {:}'.format('-'*15, i, len(to_evaluate_indexes), index, meta_info['total'], seeds, '-'*15)) | ||||
|     #logger.log('{:} {:} {:}'.format('-'*15, arch.tostr(), '-'*15)) | ||||
|     logger.log('{:} {:} {:}'.format('-'*15, arch, '-'*15)) | ||||
|    | ||||
|     # test this arch on different datasets with different seeds | ||||
|     has_continue = False | ||||
|     for seed in seeds: | ||||
|       to_save_name = sub_dir / 'arch-{:06d}-seed-{:04d}.pth'.format(index, seed) | ||||
|       if to_save_name.exists(): | ||||
|         if cover_mode: | ||||
|           logger.log('Find existing file : {:}, remove it before evaluation'.format(to_save_name)) | ||||
|           os.remove(str(to_save_name)) | ||||
|         else         : | ||||
|           logger.log('Find existing file : {:}, skip this evaluation'.format(to_save_name)) | ||||
|           has_continue = True | ||||
|           continue | ||||
|       results = evaluate_all_datasets(CellStructure.str2structure(arch), \ | ||||
|                                         datasets, xpaths, splits, use_less, seed, \ | ||||
|                                         arch_config, workers, logger) | ||||
|       torch.save(results, to_save_name) | ||||
|       logger.log('{:} --evaluate-- {:06d}/{:06d} ({:06d}/{:06d})-th seed={:} done, save into {:}'.format('-'*15, i, len(to_evaluate_indexes), index, meta_info['total'], seed, to_save_name)) | ||||
|     # measure elapsed time | ||||
|     if not has_continue: epoch_time.update(time.time() - start_time) | ||||
|     start_time = time.time() | ||||
|     need_time = 'Time Left: {:}'.format( convert_secs2time(epoch_time.avg * (len(to_evaluate_indexes)-i-1), True) ) | ||||
|     logger.log('This arch costs : {:}'.format( convert_secs2time(epoch_time.val, True) )) | ||||
|     logger.log('{:}'.format('*'*100)) | ||||
|     logger.log('{:}   {:74s}   {:}'.format('*'*10, '{:06d}/{:06d} ({:06d}/{:06d})-th done, left {:}'.format(i, len(to_evaluate_indexes), index, meta_info['total'], need_time), '*'*10)) | ||||
|     logger.log('{:}'.format('*'*100)) | ||||
|  | ||||
|   logger.close() | ||||
|     logger.close() | ||||
|  | ||||
|  | ||||
| def train_single_model(save_dir, workers, datasets, xpaths, splits, use_less, seeds, model_str, arch_config): | ||||
|   assert torch.cuda.is_available(), 'CUDA is not available.' | ||||
|   torch.backends.cudnn.enabled   = True | ||||
|   torch.backends.cudnn.deterministic = True | ||||
|   #torch.backends.cudnn.benchmark = True | ||||
|   torch.set_num_threads( workers ) | ||||
|    | ||||
|   save_dir = Path(save_dir) / 'specifics' / '{:}-{:}-{:}-{:}'.format('LESS' if use_less else 'FULL', model_str, arch_config['channel'], arch_config['num_cells']) | ||||
|   logger   = Logger(str(save_dir), 0, False) | ||||
|   if model_str in CellArchitectures: | ||||
|     arch   = CellArchitectures[model_str] | ||||
|     logger.log('The model string is found in pre-defined architecture dict : {:}'.format(model_str)) | ||||
|   else: | ||||
|     try: | ||||
|       arch = CellStructure.str2structure(model_str) | ||||
|     except: | ||||
|       raise ValueError('Invalid model string : {:}. It can not be found or parsed.'.format(model_str)) | ||||
|   assert arch.check_valid_op(get_search_spaces('cell', 'full')), '{:} has the invalid op.'.format(arch) | ||||
|   logger.log('Start train-evaluate {:}'.format(arch.tostr())) | ||||
|   logger.log('arch_config : {:}'.format(arch_config)) | ||||
|     assert torch.cuda.is_available(), "CUDA is not available." | ||||
|     torch.backends.cudnn.enabled = True | ||||
|     torch.backends.cudnn.deterministic = True | ||||
|     # torch.backends.cudnn.benchmark = True | ||||
|     torch.set_num_threads(workers) | ||||
|  | ||||
|   start_time, seed_time = time.time(), AverageMeter() | ||||
|   for _is, seed in enumerate(seeds): | ||||
|     logger.log('\nThe {:02d}/{:02d}-th seed is {:} ----------------------<.>----------------------'.format(_is, len(seeds), seed)) | ||||
|     to_save_name = save_dir / 'seed-{:04d}.pth'.format(seed) | ||||
|     if to_save_name.exists(): | ||||
|       logger.log('Find the existing file {:}, directly load!'.format(to_save_name)) | ||||
|       checkpoint = torch.load(to_save_name) | ||||
|     save_dir = ( | ||||
|         Path(save_dir) | ||||
|         / "specifics" | ||||
|         / "{:}-{:}-{:}-{:}".format( | ||||
|             "LESS" if use_less else "FULL", model_str, arch_config["channel"], arch_config["num_cells"] | ||||
|         ) | ||||
|     ) | ||||
|     logger = Logger(str(save_dir), 0, False) | ||||
|     if model_str in CellArchitectures: | ||||
|         arch = CellArchitectures[model_str] | ||||
|         logger.log("The model string is found in pre-defined architecture dict : {:}".format(model_str)) | ||||
|     else: | ||||
|       logger.log('Does not find the existing file {:}, train and evaluate!'.format(to_save_name)) | ||||
|       checkpoint = evaluate_all_datasets(arch, datasets, xpaths, splits, use_less, seed, arch_config, workers, logger) | ||||
|       torch.save(checkpoint, to_save_name) | ||||
|     # log information | ||||
|     logger.log('{:}'.format(checkpoint['info'])) | ||||
|     all_dataset_keys = checkpoint['all_dataset_keys'] | ||||
|     for dataset_key in all_dataset_keys: | ||||
|       logger.log('\n{:} dataset : {:} {:}'.format('-'*15, dataset_key, '-'*15)) | ||||
|       dataset_info = checkpoint[dataset_key] | ||||
|       #logger.log('Network ==>\n{:}'.format( dataset_info['net_string'] )) | ||||
|       logger.log('Flops = {:} MB, Params = {:} MB'.format(dataset_info['flop'], dataset_info['param'])) | ||||
|       logger.log('config : {:}'.format(dataset_info['config'])) | ||||
|       logger.log('Training State (finish) = {:}'.format(dataset_info['finish-train'])) | ||||
|       last_epoch = dataset_info['total_epoch'] - 1 | ||||
|       train_acc1es, train_acc5es = dataset_info['train_acc1es'], dataset_info['train_acc5es'] | ||||
|       valid_acc1es, valid_acc5es = dataset_info['valid_acc1es'], dataset_info['valid_acc5es'] | ||||
|       logger.log('Last Info : Train = Acc@1 {:.2f}% Acc@5 {:.2f}% Error@1 {:.2f}%, Test = Acc@1 {:.2f}% Acc@5 {:.2f}% Error@1 {:.2f}%'.format(train_acc1es[last_epoch], train_acc5es[last_epoch], 100-train_acc1es[last_epoch], valid_acc1es[last_epoch], valid_acc5es[last_epoch], 100-valid_acc1es[last_epoch])) | ||||
|     # measure elapsed time | ||||
|     seed_time.update(time.time() - start_time) | ||||
|     start_time = time.time() | ||||
|     need_time = 'Time Left: {:}'.format( convert_secs2time(seed_time.avg * (len(seeds)-_is-1), True) ) | ||||
|     logger.log('\n<<<***>>> The {:02d}/{:02d}-th seed is {:} <finish> other procedures need {:}'.format(_is, len(seeds), seed, need_time)) | ||||
|   logger.close() | ||||
|         try: | ||||
|             arch = CellStructure.str2structure(model_str) | ||||
|         except: | ||||
|             raise ValueError("Invalid model string : {:}. It can not be found or parsed.".format(model_str)) | ||||
|     assert arch.check_valid_op(get_search_spaces("cell", "full")), "{:} has the invalid op.".format(arch) | ||||
|     logger.log("Start train-evaluate {:}".format(arch.tostr())) | ||||
|     logger.log("arch_config : {:}".format(arch_config)) | ||||
|  | ||||
|     start_time, seed_time = time.time(), AverageMeter() | ||||
|     for _is, seed in enumerate(seeds): | ||||
|         logger.log( | ||||
|             "\nThe {:02d}/{:02d}-th seed is {:} ----------------------<.>----------------------".format( | ||||
|                 _is, len(seeds), seed | ||||
|             ) | ||||
|         ) | ||||
|         to_save_name = save_dir / "seed-{:04d}.pth".format(seed) | ||||
|         if to_save_name.exists(): | ||||
|             logger.log("Find the existing file {:}, directly load!".format(to_save_name)) | ||||
|             checkpoint = torch.load(to_save_name) | ||||
|         else: | ||||
|             logger.log("Does not find the existing file {:}, train and evaluate!".format(to_save_name)) | ||||
|             checkpoint = evaluate_all_datasets( | ||||
|                 arch, datasets, xpaths, splits, use_less, seed, arch_config, workers, logger | ||||
|             ) | ||||
|             torch.save(checkpoint, to_save_name) | ||||
|         # log information | ||||
|         logger.log("{:}".format(checkpoint["info"])) | ||||
|         all_dataset_keys = checkpoint["all_dataset_keys"] | ||||
|         for dataset_key in all_dataset_keys: | ||||
|             logger.log("\n{:} dataset : {:} {:}".format("-" * 15, dataset_key, "-" * 15)) | ||||
|             dataset_info = checkpoint[dataset_key] | ||||
|             # logger.log('Network ==>\n{:}'.format( dataset_info['net_string'] )) | ||||
|             logger.log("Flops = {:} MB, Params = {:} MB".format(dataset_info["flop"], dataset_info["param"])) | ||||
|             logger.log("config : {:}".format(dataset_info["config"])) | ||||
|             logger.log("Training State (finish) = {:}".format(dataset_info["finish-train"])) | ||||
|             last_epoch = dataset_info["total_epoch"] - 1 | ||||
|             train_acc1es, train_acc5es = dataset_info["train_acc1es"], dataset_info["train_acc5es"] | ||||
|             valid_acc1es, valid_acc5es = dataset_info["valid_acc1es"], dataset_info["valid_acc5es"] | ||||
|             logger.log( | ||||
|                 "Last Info : Train = Acc@1 {:.2f}% Acc@5 {:.2f}% Error@1 {:.2f}%, Test = Acc@1 {:.2f}% Acc@5 {:.2f}% Error@1 {:.2f}%".format( | ||||
|                     train_acc1es[last_epoch], | ||||
|                     train_acc5es[last_epoch], | ||||
|                     100 - train_acc1es[last_epoch], | ||||
|                     valid_acc1es[last_epoch], | ||||
|                     valid_acc5es[last_epoch], | ||||
|                     100 - valid_acc1es[last_epoch], | ||||
|                 ) | ||||
|             ) | ||||
|         # measure elapsed time | ||||
|         seed_time.update(time.time() - start_time) | ||||
|         start_time = time.time() | ||||
|         need_time = "Time Left: {:}".format(convert_secs2time(seed_time.avg * (len(seeds) - _is - 1), True)) | ||||
|         logger.log( | ||||
|             "\n<<<***>>> The {:02d}/{:02d}-th seed is {:} <finish> other procedures need {:}".format( | ||||
|                 _is, len(seeds), seed, need_time | ||||
|             ) | ||||
|         ) | ||||
|     logger.close() | ||||
|  | ||||
|  | ||||
| def generate_meta_info(save_dir, max_node, divide=40): | ||||
|   aa_nas_bench_ss = get_search_spaces('cell', 'nas-bench-201') | ||||
|   archs = CellStructure.gen_all(aa_nas_bench_ss, max_node, False) | ||||
|   print ('There are {:} archs vs {:}.'.format(len(archs), len(aa_nas_bench_ss) ** ((max_node-1)*max_node/2))) | ||||
|     aa_nas_bench_ss = get_search_spaces("cell", "nas-bench-201") | ||||
|     archs = CellStructure.gen_all(aa_nas_bench_ss, max_node, False) | ||||
|     print("There are {:} archs vs {:}.".format(len(archs), len(aa_nas_bench_ss) ** ((max_node - 1) * max_node / 2))) | ||||
|  | ||||
|   random.seed( 88 ) # please do not change this line for reproducibility | ||||
|   random.shuffle( archs ) | ||||
|   # to test fixed-random shuffle  | ||||
|   #print ('arch [0] : {:}\n---->>>>   {:}'.format( archs[0], archs[0].tostr() )) | ||||
|   #print ('arch [9] : {:}\n---->>>>   {:}'.format( archs[9], archs[9].tostr() )) | ||||
|   assert archs[0  ].tostr() == '|avg_pool_3x3~0|+|nor_conv_1x1~0|skip_connect~1|+|nor_conv_1x1~0|skip_connect~1|skip_connect~2|', 'please check the 0-th architecture : {:}'.format(archs[0]) | ||||
|   assert archs[9  ].tostr() == '|avg_pool_3x3~0|+|none~0|none~1|+|skip_connect~0|none~1|nor_conv_3x3~2|', 'please check the 9-th architecture : {:}'.format(archs[9]) | ||||
|   assert archs[123].tostr() == '|avg_pool_3x3~0|+|avg_pool_3x3~0|nor_conv_1x1~1|+|none~0|avg_pool_3x3~1|nor_conv_3x3~2|', 'please check the 123-th architecture : {:}'.format(archs[123]) | ||||
|   total_arch = len(archs) | ||||
|    | ||||
|   num = 50000 | ||||
|   indexes_5W = list(range(num)) | ||||
|   random.seed( 1021 ) | ||||
|   random.shuffle( indexes_5W ) | ||||
|   train_split = sorted( list(set(indexes_5W[:num//2])) ) | ||||
|   valid_split = sorted( list(set(indexes_5W[num//2:])) ) | ||||
|   assert len(train_split) + len(valid_split) == num | ||||
|   assert train_split[0] == 0 and train_split[10] == 26 and train_split[111] == 203 and valid_split[0] == 1 and valid_split[10] == 18 and valid_split[111] == 242, '{:} {:} {:} - {:} {:} {:}'.format(train_split[0], train_split[10], train_split[111], valid_split[0], valid_split[10], valid_split[111]) | ||||
|   splits = {num: {'train': train_split, 'valid': valid_split} } | ||||
|     random.seed(88)  # please do not change this line for reproducibility | ||||
|     random.shuffle(archs) | ||||
|     # to test fixed-random shuffle | ||||
|     # print ('arch [0] : {:}\n---->>>>   {:}'.format( archs[0], archs[0].tostr() )) | ||||
|     # print ('arch [9] : {:}\n---->>>>   {:}'.format( archs[9], archs[9].tostr() )) | ||||
|     assert ( | ||||
|         archs[0].tostr() | ||||
|         == "|avg_pool_3x3~0|+|nor_conv_1x1~0|skip_connect~1|+|nor_conv_1x1~0|skip_connect~1|skip_connect~2|" | ||||
|     ), "please check the 0-th architecture : {:}".format(archs[0]) | ||||
|     assert ( | ||||
|         archs[9].tostr() == "|avg_pool_3x3~0|+|none~0|none~1|+|skip_connect~0|none~1|nor_conv_3x3~2|" | ||||
|     ), "please check the 9-th architecture : {:}".format(archs[9]) | ||||
|     assert ( | ||||
|         archs[123].tostr() == "|avg_pool_3x3~0|+|avg_pool_3x3~0|nor_conv_1x1~1|+|none~0|avg_pool_3x3~1|nor_conv_3x3~2|" | ||||
|     ), "please check the 123-th architecture : {:}".format(archs[123]) | ||||
|     total_arch = len(archs) | ||||
|  | ||||
|   info = {'archs' : [x.tostr() for x in archs], | ||||
|           'total' : total_arch, | ||||
|           'max_node' : max_node, | ||||
|           'splits': splits} | ||||
|     num = 50000 | ||||
|     indexes_5W = list(range(num)) | ||||
|     random.seed(1021) | ||||
|     random.shuffle(indexes_5W) | ||||
|     train_split = sorted(list(set(indexes_5W[: num // 2]))) | ||||
|     valid_split = sorted(list(set(indexes_5W[num // 2 :]))) | ||||
|     assert len(train_split) + len(valid_split) == num | ||||
|     assert ( | ||||
|         train_split[0] == 0 | ||||
|         and train_split[10] == 26 | ||||
|         and train_split[111] == 203 | ||||
|         and valid_split[0] == 1 | ||||
|         and valid_split[10] == 18 | ||||
|         and valid_split[111] == 242 | ||||
|     ), "{:} {:} {:} - {:} {:} {:}".format( | ||||
|         train_split[0], train_split[10], train_split[111], valid_split[0], valid_split[10], valid_split[111] | ||||
|     ) | ||||
|     splits = {num: {"train": train_split, "valid": valid_split}} | ||||
|  | ||||
|   save_dir = Path(save_dir) | ||||
|   save_dir.mkdir(parents=True, exist_ok=True) | ||||
|   save_name = save_dir / 'meta-node-{:}.pth'.format(max_node) | ||||
|   assert not save_name.exists(), '{:} already exist'.format(save_name) | ||||
|   torch.save(info, save_name) | ||||
|   print ('save the meta file into {:}'.format(save_name)) | ||||
|     info = {"archs": [x.tostr() for x in archs], "total": total_arch, "max_node": max_node, "splits": splits} | ||||
|  | ||||
|   script_name_full = save_dir / 'BENCH-201-N{:}.opt-full.script'.format(max_node) | ||||
|   script_name_less = save_dir / 'BENCH-201-N{:}.opt-less.script'.format(max_node) | ||||
|   full_file = open(str(script_name_full), 'w') | ||||
|   less_file = open(str(script_name_less), 'w') | ||||
|   gaps = total_arch // divide | ||||
|   for start in range(0, total_arch, gaps): | ||||
|     xend = min(start+gaps, total_arch) | ||||
|     full_file.write('bash ./scripts-search/NAS-Bench-201/train-models.sh 0 {:5d} {:5d} -1 \'777 888 999\'\n'.format(start, xend-1)) | ||||
|     less_file.write('bash ./scripts-search/NAS-Bench-201/train-models.sh 1 {:5d} {:5d} -1 \'777 888 999\'\n'.format(start, xend-1)) | ||||
|   print ('save the training script into {:} and {:}'.format(script_name_full, script_name_less)) | ||||
|   full_file.close() | ||||
|   less_file.close() | ||||
|     save_dir = Path(save_dir) | ||||
|     save_dir.mkdir(parents=True, exist_ok=True) | ||||
|     save_name = save_dir / "meta-node-{:}.pth".format(max_node) | ||||
|     assert not save_name.exists(), "{:} already exist".format(save_name) | ||||
|     torch.save(info, save_name) | ||||
|     print("save the meta file into {:}".format(save_name)) | ||||
|  | ||||
|   script_name = save_dir / 'meta-node-{:}.cal-script.txt'.format(max_node) | ||||
|   macro = 'OMP_NUM_THREADS=6 CUDA_VISIBLE_DEVICES=0' | ||||
|   with open(str(script_name), 'w') as cfile: | ||||
|     script_name_full = save_dir / "BENCH-201-N{:}.opt-full.script".format(max_node) | ||||
|     script_name_less = save_dir / "BENCH-201-N{:}.opt-less.script".format(max_node) | ||||
|     full_file = open(str(script_name_full), "w") | ||||
|     less_file = open(str(script_name_less), "w") | ||||
|     gaps = total_arch // divide | ||||
|     for start in range(0, total_arch, gaps): | ||||
|       xend = min(start+gaps, total_arch) | ||||
|       cfile.write('{:} python exps/NAS-Bench-201/statistics.py --mode cal --target_dir {:06d}-{:06d}-C16-N5\n'.format(macro, start, xend-1)) | ||||
|   print ('save the post-processing script into {:}'.format(script_name)) | ||||
|         xend = min(start + gaps, total_arch) | ||||
|         full_file.write( | ||||
|             "bash ./scripts-search/NAS-Bench-201/train-models.sh 0 {:5d} {:5d} -1 '777 888 999'\n".format( | ||||
|                 start, xend - 1 | ||||
|             ) | ||||
|         ) | ||||
|         less_file.write( | ||||
|             "bash ./scripts-search/NAS-Bench-201/train-models.sh 1 {:5d} {:5d} -1 '777 888 999'\n".format( | ||||
|                 start, xend - 1 | ||||
|             ) | ||||
|         ) | ||||
|     print("save the training script into {:} and {:}".format(script_name_full, script_name_less)) | ||||
|     full_file.close() | ||||
|     less_file.close() | ||||
|  | ||||
|     script_name = save_dir / "meta-node-{:}.cal-script.txt".format(max_node) | ||||
|     macro = "OMP_NUM_THREADS=6 CUDA_VISIBLE_DEVICES=0" | ||||
|     with open(str(script_name), "w") as cfile: | ||||
|         for start in range(0, total_arch, gaps): | ||||
|             xend = min(start + gaps, total_arch) | ||||
|             cfile.write( | ||||
|                 "{:} python exps/NAS-Bench-201/statistics.py --mode cal --target_dir {:06d}-{:06d}-C16-N5\n".format( | ||||
|                     macro, start, xend - 1 | ||||
|                 ) | ||||
|             ) | ||||
|     print("save the post-processing script into {:}".format(script_name)) | ||||
|  | ||||
|  | ||||
| if __name__ == '__main__': | ||||
|   #mode_choices = ['meta', 'new', 'cover'] + ['specific-{:}'.format(_) for _ in CellArchitectures.keys()] | ||||
|   #parser = argparse.ArgumentParser(description='Algorithm-Agnostic NAS Benchmark', formatter_class=argparse.ArgumentDefaultsHelpFormatter) | ||||
|   parser = argparse.ArgumentParser(description='NAS-Bench-201', formatter_class=argparse.ArgumentDefaultsHelpFormatter) | ||||
|   parser.add_argument('--mode'   ,     type=str,   required=True,  help='The script mode.') | ||||
|   parser.add_argument('--save_dir',    type=str,                   help='Folder to save checkpoints and log.') | ||||
|   parser.add_argument('--max_node',    type=int,                   help='The maximum node in a cell.') | ||||
|   # use for train the model | ||||
|   parser.add_argument('--workers',     type=int,   default=8,      help='number of data loading workers (default: 2)') | ||||
|   parser.add_argument('--srange' ,     type=int,   nargs='+',      help='The range of models to be evaluated') | ||||
|   parser.add_argument('--arch_index',  type=int,   default=-1,     help='The architecture index to be evaluated (cover mode).') | ||||
|   parser.add_argument('--datasets',    type=str,   nargs='+',      help='The applied datasets.') | ||||
|   parser.add_argument('--xpaths',      type=str,   nargs='+',      help='The root path for this dataset.') | ||||
|   parser.add_argument('--splits',      type=int,   nargs='+',      help='The root path for this dataset.') | ||||
|   parser.add_argument('--use_less',    type=int,   default=0, choices=[0,1], help='Using the less-training-epoch config.') | ||||
|   parser.add_argument('--seeds'  ,     type=int,   nargs='+',      help='The range of models to be evaluated') | ||||
|   parser.add_argument('--channel',     type=int,                   help='The number of channels.') | ||||
|   parser.add_argument('--num_cells',   type=int,                   help='The number of cells in one stage.') | ||||
|   args = parser.parse_args() | ||||
| if __name__ == "__main__": | ||||
|     # mode_choices = ['meta', 'new', 'cover'] + ['specific-{:}'.format(_) for _ in CellArchitectures.keys()] | ||||
|     # parser = argparse.ArgumentParser(description='Algorithm-Agnostic NAS Benchmark', formatter_class=argparse.ArgumentDefaultsHelpFormatter) | ||||
|     parser = argparse.ArgumentParser( | ||||
|         description="NAS-Bench-201", formatter_class=argparse.ArgumentDefaultsHelpFormatter | ||||
|     ) | ||||
|     parser.add_argument("--mode", type=str, required=True, help="The script mode.") | ||||
|     parser.add_argument("--save_dir", type=str, help="Folder to save checkpoints and log.") | ||||
|     parser.add_argument("--max_node", type=int, help="The maximum node in a cell.") | ||||
|     # use for train the model | ||||
|     parser.add_argument("--workers", type=int, default=8, help="number of data loading workers (default: 2)") | ||||
|     parser.add_argument("--srange", type=int, nargs="+", help="The range of models to be evaluated") | ||||
|     parser.add_argument( | ||||
|         "--arch_index", type=int, default=-1, help="The architecture index to be evaluated (cover mode)." | ||||
|     ) | ||||
|     parser.add_argument("--datasets", type=str, nargs="+", help="The applied datasets.") | ||||
|     parser.add_argument("--xpaths", type=str, nargs="+", help="The root path for this dataset.") | ||||
|     parser.add_argument("--splits", type=int, nargs="+", help="The root path for this dataset.") | ||||
|     parser.add_argument("--use_less", type=int, default=0, choices=[0, 1], help="Using the less-training-epoch config.") | ||||
|     parser.add_argument("--seeds", type=int, nargs="+", help="The range of models to be evaluated") | ||||
|     parser.add_argument("--channel", type=int, help="The number of channels.") | ||||
|     parser.add_argument("--num_cells", type=int, help="The number of cells in one stage.") | ||||
|     args = parser.parse_args() | ||||
|  | ||||
|   assert args.mode in ['meta', 'new', 'cover'] or args.mode.startswith('specific-'), 'invalid mode : {:}'.format(args.mode) | ||||
|     assert args.mode in ["meta", "new", "cover"] or args.mode.startswith("specific-"), "invalid mode : {:}".format( | ||||
|         args.mode | ||||
|     ) | ||||
|  | ||||
|   if args.mode == 'meta': | ||||
|     generate_meta_info(args.save_dir, args.max_node) | ||||
|   elif args.mode.startswith('specific'): | ||||
|     assert len(args.mode.split('-')) == 2, 'invalid mode : {:}'.format(args.mode) | ||||
|     model_str = args.mode.split('-')[1] | ||||
|     train_single_model(args.save_dir, args.workers, args.datasets, args.xpaths, args.splits, args.use_less>0, \ | ||||
|                          tuple(args.seeds), model_str, {'channel': args.channel, 'num_cells': args.num_cells}) | ||||
|   else: | ||||
|     meta_path = Path(args.save_dir) / 'meta-node-{:}.pth'.format(args.max_node) | ||||
|     assert meta_path.exists(), '{:} does not exist.'.format(meta_path) | ||||
|     meta_info = torch.load( meta_path ) | ||||
|     # check whether args is ok | ||||
|     assert len(args.srange) == 2 and args.srange[0] <= args.srange[1], 'invalid length of srange args: {:}'.format(args.srange) | ||||
|     assert len(args.seeds) > 0, 'invalid length of seeds args: {:}'.format(args.seeds) | ||||
|     assert len(args.datasets) == len(args.xpaths) == len(args.splits), 'invalid infos : {:} vs {:} vs {:}'.format(len(args.datasets), len(args.xpaths), len(args.splits)) | ||||
|     assert args.workers > 0, 'invalid number of workers : {:}'.format(args.workers) | ||||
|    | ||||
|     main(args.save_dir, args.workers, args.datasets, args.xpaths, args.splits, args.use_less>0, \ | ||||
|            tuple(args.srange), args.arch_index, tuple(args.seeds), \ | ||||
|            args.mode == 'cover', meta_info, \ | ||||
|            {'channel': args.channel, 'num_cells': args.num_cells}) | ||||
|     if args.mode == "meta": | ||||
|         generate_meta_info(args.save_dir, args.max_node) | ||||
|     elif args.mode.startswith("specific"): | ||||
|         assert len(args.mode.split("-")) == 2, "invalid mode : {:}".format(args.mode) | ||||
|         model_str = args.mode.split("-")[1] | ||||
|         train_single_model( | ||||
|             args.save_dir, | ||||
|             args.workers, | ||||
|             args.datasets, | ||||
|             args.xpaths, | ||||
|             args.splits, | ||||
|             args.use_less > 0, | ||||
|             tuple(args.seeds), | ||||
|             model_str, | ||||
|             {"channel": args.channel, "num_cells": args.num_cells}, | ||||
|         ) | ||||
|     else: | ||||
|         meta_path = Path(args.save_dir) / "meta-node-{:}.pth".format(args.max_node) | ||||
|         assert meta_path.exists(), "{:} does not exist.".format(meta_path) | ||||
|         meta_info = torch.load(meta_path) | ||||
|         # check whether args is ok | ||||
|         assert len(args.srange) == 2 and args.srange[0] <= args.srange[1], "invalid length of srange args: {:}".format( | ||||
|             args.srange | ||||
|         ) | ||||
|         assert len(args.seeds) > 0, "invalid length of seeds args: {:}".format(args.seeds) | ||||
|         assert len(args.datasets) == len(args.xpaths) == len(args.splits), "invalid infos : {:} vs {:} vs {:}".format( | ||||
|             len(args.datasets), len(args.xpaths), len(args.splits) | ||||
|         ) | ||||
|         assert args.workers > 0, "invalid number of workers : {:}".format(args.workers) | ||||
|  | ||||
|         main( | ||||
|             args.save_dir, | ||||
|             args.workers, | ||||
|             args.datasets, | ||||
|             args.xpaths, | ||||
|             args.splits, | ||||
|             args.use_less > 0, | ||||
|             tuple(args.srange), | ||||
|             args.arch_index, | ||||
|             tuple(args.seeds), | ||||
|             args.mode == "cover", | ||||
|             meta_info, | ||||
|             {"channel": args.channel, "num_cells": args.num_cells}, | ||||
|         ) | ||||
|   | ||||
| @@ -5,35 +5,37 @@ | ||||
| ################################################################################################ | ||||
| import sys, argparse | ||||
| from pathlib import Path | ||||
| lib_dir = (Path(__file__).parent / '..' / '..' / 'lib').resolve() | ||||
| if str(lib_dir) not in sys.path: sys.path.insert(0, str(lib_dir)) | ||||
| from nas_201_api  import NASBench201API as API | ||||
|  | ||||
| if __name__ == '__main__': | ||||
|   parser = argparse.ArgumentParser("Analysis of NAS-Bench-201") | ||||
|   parser.add_argument('--api_path',  type=str, default=None,                                         help='The path to the NAS-Bench-201 benchmark file.') | ||||
|   args = parser.parse_args() | ||||
| lib_dir = (Path(__file__).parent / ".." / ".." / "lib").resolve() | ||||
| if str(lib_dir) not in sys.path: | ||||
|     sys.path.insert(0, str(lib_dir)) | ||||
| from nas_201_api import NASBench201API as API | ||||
|  | ||||
|   meta_file = Path(args.api_path) | ||||
|   assert meta_file.exists(), 'invalid path for api : {:}'.format(meta_file) | ||||
| if __name__ == "__main__": | ||||
|     parser = argparse.ArgumentParser("Analysis of NAS-Bench-201") | ||||
|     parser.add_argument("--api_path", type=str, default=None, help="The path to the NAS-Bench-201 benchmark file.") | ||||
|     args = parser.parse_args() | ||||
|  | ||||
|   api = API(str(meta_file)) | ||||
|     meta_file = Path(args.api_path) | ||||
|     assert meta_file.exists(), "invalid path for api : {:}".format(meta_file) | ||||
|  | ||||
|   # This will show the results of the best architecture based on the validation set of each dataset. | ||||
|   arch_index, accuracy = api.find_best('cifar10-valid', 'x-valid', None, None, False) | ||||
|   print('FOR CIFAR-010, using the hyper-parameters with 200 training epochs :::') | ||||
|   print('arch-index={:5d}, arch={:}'.format(arch_index, api.arch(arch_index))) | ||||
|   api.show(arch_index) | ||||
|   print('') | ||||
|     api = API(str(meta_file)) | ||||
|  | ||||
|   arch_index, accuracy = api.find_best('cifar100', 'x-valid', None, None, False) | ||||
|   print('FOR CIFAR-100, using the hyper-parameters with 200 training epochs :::') | ||||
|   print('arch-index={:5d}, arch={:}'.format(arch_index, api.arch(arch_index))) | ||||
|   api.show(arch_index) | ||||
|   print('') | ||||
|     # This will show the results of the best architecture based on the validation set of each dataset. | ||||
|     arch_index, accuracy = api.find_best("cifar10-valid", "x-valid", None, None, False) | ||||
|     print("FOR CIFAR-010, using the hyper-parameters with 200 training epochs :::") | ||||
|     print("arch-index={:5d}, arch={:}".format(arch_index, api.arch(arch_index))) | ||||
|     api.show(arch_index) | ||||
|     print("") | ||||
|  | ||||
|   arch_index, accuracy = api.find_best('ImageNet16-120', 'x-valid', None, None, False) | ||||
|   print('FOR ImageNet16-120, using the hyper-parameters with 200 training epochs :::') | ||||
|   print('arch-index={:5d}, arch={:}'.format(arch_index, api.arch(arch_index))) | ||||
|   api.show(arch_index) | ||||
|   print('') | ||||
|     arch_index, accuracy = api.find_best("cifar100", "x-valid", None, None, False) | ||||
|     print("FOR CIFAR-100, using the hyper-parameters with 200 training epochs :::") | ||||
|     print("arch-index={:5d}, arch={:}".format(arch_index, api.arch(arch_index))) | ||||
|     api.show(arch_index) | ||||
|     print("") | ||||
|  | ||||
|     arch_index, accuracy = api.find_best("ImageNet16-120", "x-valid", None, None, False) | ||||
|     print("FOR ImageNet16-120, using the hyper-parameters with 200 training epochs :::") | ||||
|     print("arch-index={:5d}, arch={:}".format(arch_index, api.arch(arch_index))) | ||||
|     api.show(arch_index) | ||||
|     print("") | ||||
|   | ||||
| @@ -7,276 +7,396 @@ import torch | ||||
| from pathlib import Path | ||||
| from collections import defaultdict, OrderedDict | ||||
| from typing import Dict, Any, Text, List | ||||
| lib_dir = (Path(__file__).parent / '..' / '..' / 'lib').resolve() | ||||
| if str(lib_dir) not in sys.path: sys.path.insert(0, str(lib_dir)) | ||||
| from log_utils    import AverageMeter, time_string, convert_secs2time | ||||
|  | ||||
| lib_dir = (Path(__file__).parent / ".." / ".." / "lib").resolve() | ||||
| if str(lib_dir) not in sys.path: | ||||
|     sys.path.insert(0, str(lib_dir)) | ||||
| from log_utils import AverageMeter, time_string, convert_secs2time | ||||
| from config_utils import dict2config | ||||
|  | ||||
| # NAS-Bench-201 related module or function | ||||
| from models       import CellStructure, get_cell_based_tiny_net | ||||
| from nas_201_api  import NASBench201API, ArchResults, ResultsCount | ||||
| from procedures   import bench_pure_evaluate as pure_evaluate, get_nas_bench_loaders | ||||
| from models import CellStructure, get_cell_based_tiny_net | ||||
| from nas_201_api import NASBench201API, ArchResults, ResultsCount | ||||
| from procedures import bench_pure_evaluate as pure_evaluate, get_nas_bench_loaders | ||||
|  | ||||
| api = NASBench201API('{:}/.torch/NAS-Bench-201-v1_0-e61699.pth'.format(os.environ['HOME'])) | ||||
| api = NASBench201API("{:}/.torch/NAS-Bench-201-v1_0-e61699.pth".format(os.environ["HOME"])) | ||||
|  | ||||
| def create_result_count(used_seed: int, dataset: Text, arch_config: Dict[Text, Any], | ||||
|                         results: Dict[Text, Any], dataloader_dict: Dict[Text, Any]) -> ResultsCount: | ||||
|   xresult = ResultsCount(dataset, results['net_state_dict'], results['train_acc1es'], results['train_losses'], | ||||
|                          results['param'], results['flop'], arch_config, used_seed, results['total_epoch'], None) | ||||
|   net_config = dict2config({'name': 'infer.tiny', 'C': arch_config['channel'], 'N': arch_config['num_cells'], 'genotype': CellStructure.str2structure(arch_config['arch_str']), 'num_classes': arch_config['class_num']}, None) | ||||
|   network = get_cell_based_tiny_net(net_config) | ||||
|   network.load_state_dict(xresult.get_net_param()) | ||||
|   if 'train_times' in results: # new version | ||||
|     xresult.update_train_info(results['train_acc1es'], results['train_acc5es'], results['train_losses'], results['train_times']) | ||||
|     xresult.update_eval(results['valid_acc1es'], results['valid_losses'], results['valid_times']) | ||||
|   else: | ||||
|     if dataset == 'cifar10-valid': | ||||
|       xresult.update_OLD_eval('x-valid' , results['valid_acc1es'], results['valid_losses']) | ||||
|       loss, top1, top5, latencies = pure_evaluate(dataloader_dict['{:}@{:}'.format('cifar10', 'test')], network.cuda()) | ||||
|       xresult.update_OLD_eval('ori-test', {results['total_epoch']-1: top1}, {results['total_epoch']-1: loss}) | ||||
|       xresult.update_latency(latencies) | ||||
|     elif dataset == 'cifar10': | ||||
|       xresult.update_OLD_eval('ori-test', results['valid_acc1es'], results['valid_losses']) | ||||
|       loss, top1, top5, latencies = pure_evaluate(dataloader_dict['{:}@{:}'.format(dataset, 'test')], network.cuda()) | ||||
|       xresult.update_latency(latencies) | ||||
|     elif dataset == 'cifar100' or dataset == 'ImageNet16-120': | ||||
|       xresult.update_OLD_eval('ori-test', results['valid_acc1es'], results['valid_losses']) | ||||
|       loss, top1, top5, latencies = pure_evaluate(dataloader_dict['{:}@{:}'.format(dataset, 'valid')], network.cuda()) | ||||
|       xresult.update_OLD_eval('x-valid', {results['total_epoch']-1: top1}, {results['total_epoch']-1: loss}) | ||||
|       loss, top1, top5, latencies = pure_evaluate(dataloader_dict['{:}@{:}'.format(dataset,  'test')], network.cuda()) | ||||
|       xresult.update_OLD_eval('x-test' , {results['total_epoch']-1: top1}, {results['total_epoch']-1: loss}) | ||||
|       xresult.update_latency(latencies) | ||||
|  | ||||
| def create_result_count( | ||||
|     used_seed: int, | ||||
|     dataset: Text, | ||||
|     arch_config: Dict[Text, Any], | ||||
|     results: Dict[Text, Any], | ||||
|     dataloader_dict: Dict[Text, Any], | ||||
| ) -> ResultsCount: | ||||
|     xresult = ResultsCount( | ||||
|         dataset, | ||||
|         results["net_state_dict"], | ||||
|         results["train_acc1es"], | ||||
|         results["train_losses"], | ||||
|         results["param"], | ||||
|         results["flop"], | ||||
|         arch_config, | ||||
|         used_seed, | ||||
|         results["total_epoch"], | ||||
|         None, | ||||
|     ) | ||||
|     net_config = dict2config( | ||||
|         { | ||||
|             "name": "infer.tiny", | ||||
|             "C": arch_config["channel"], | ||||
|             "N": arch_config["num_cells"], | ||||
|             "genotype": CellStructure.str2structure(arch_config["arch_str"]), | ||||
|             "num_classes": arch_config["class_num"], | ||||
|         }, | ||||
|         None, | ||||
|     ) | ||||
|     network = get_cell_based_tiny_net(net_config) | ||||
|     network.load_state_dict(xresult.get_net_param()) | ||||
|     if "train_times" in results:  # new version | ||||
|         xresult.update_train_info( | ||||
|             results["train_acc1es"], results["train_acc5es"], results["train_losses"], results["train_times"] | ||||
|         ) | ||||
|         xresult.update_eval(results["valid_acc1es"], results["valid_losses"], results["valid_times"]) | ||||
|     else: | ||||
|       raise ValueError('invalid dataset name : {:}'.format(dataset)) | ||||
|   return xresult | ||||
|    | ||||
|         if dataset == "cifar10-valid": | ||||
|             xresult.update_OLD_eval("x-valid", results["valid_acc1es"], results["valid_losses"]) | ||||
|             loss, top1, top5, latencies = pure_evaluate( | ||||
|                 dataloader_dict["{:}@{:}".format("cifar10", "test")], network.cuda() | ||||
|             ) | ||||
|             xresult.update_OLD_eval("ori-test", {results["total_epoch"] - 1: top1}, {results["total_epoch"] - 1: loss}) | ||||
|             xresult.update_latency(latencies) | ||||
|         elif dataset == "cifar10": | ||||
|             xresult.update_OLD_eval("ori-test", results["valid_acc1es"], results["valid_losses"]) | ||||
|             loss, top1, top5, latencies = pure_evaluate( | ||||
|                 dataloader_dict["{:}@{:}".format(dataset, "test")], network.cuda() | ||||
|             ) | ||||
|             xresult.update_latency(latencies) | ||||
|         elif dataset == "cifar100" or dataset == "ImageNet16-120": | ||||
|             xresult.update_OLD_eval("ori-test", results["valid_acc1es"], results["valid_losses"]) | ||||
|             loss, top1, top5, latencies = pure_evaluate( | ||||
|                 dataloader_dict["{:}@{:}".format(dataset, "valid")], network.cuda() | ||||
|             ) | ||||
|             xresult.update_OLD_eval("x-valid", {results["total_epoch"] - 1: top1}, {results["total_epoch"] - 1: loss}) | ||||
|             loss, top1, top5, latencies = pure_evaluate( | ||||
|                 dataloader_dict["{:}@{:}".format(dataset, "test")], network.cuda() | ||||
|             ) | ||||
|             xresult.update_OLD_eval("x-test", {results["total_epoch"] - 1: top1}, {results["total_epoch"] - 1: loss}) | ||||
|             xresult.update_latency(latencies) | ||||
|         else: | ||||
|             raise ValueError("invalid dataset name : {:}".format(dataset)) | ||||
|     return xresult | ||||
|  | ||||
|  | ||||
| def account_one_arch(arch_index: int, arch_str: Text, checkpoints: List[Text], | ||||
|                      datasets: List[Text], dataloader_dict: Dict[Text, Any]) -> ArchResults: | ||||
|   information = ArchResults(arch_index, arch_str) | ||||
| def account_one_arch( | ||||
|     arch_index: int, arch_str: Text, checkpoints: List[Text], datasets: List[Text], dataloader_dict: Dict[Text, Any] | ||||
| ) -> ArchResults: | ||||
|     information = ArchResults(arch_index, arch_str) | ||||
|  | ||||
|   for checkpoint_path in checkpoints: | ||||
|     checkpoint = torch.load(checkpoint_path, map_location='cpu') | ||||
|     used_seed  = checkpoint_path.name.split('-')[-1].split('.')[0] | ||||
|     ok_dataset = 0 | ||||
|     for dataset in datasets: | ||||
|       if dataset not in checkpoint: | ||||
|         print('Can not find {:} in arch-{:} from {:}'.format(dataset, arch_index, checkpoint_path)) | ||||
|         continue | ||||
|       else: | ||||
|         ok_dataset += 1 | ||||
|       results     = checkpoint[dataset] | ||||
|       assert results['finish-train'], 'This {:} arch seed={:} does not finish train on {:} ::: {:}'.format(arch_index, used_seed, dataset, checkpoint_path) | ||||
|       arch_config = {'channel': results['channel'], 'num_cells': results['num_cells'], 'arch_str': arch_str, 'class_num': results['config']['class_num']} | ||||
|        | ||||
|       xresult = create_result_count(used_seed, dataset, arch_config, results, dataloader_dict) | ||||
|       information.update(dataset, int(used_seed), xresult) | ||||
|     if ok_dataset == 0: raise ValueError('{:} does not find any data'.format(checkpoint_path)) | ||||
|   return information | ||||
|     for checkpoint_path in checkpoints: | ||||
|         checkpoint = torch.load(checkpoint_path, map_location="cpu") | ||||
|         used_seed = checkpoint_path.name.split("-")[-1].split(".")[0] | ||||
|         ok_dataset = 0 | ||||
|         for dataset in datasets: | ||||
|             if dataset not in checkpoint: | ||||
|                 print("Can not find {:} in arch-{:} from {:}".format(dataset, arch_index, checkpoint_path)) | ||||
|                 continue | ||||
|             else: | ||||
|                 ok_dataset += 1 | ||||
|             results = checkpoint[dataset] | ||||
|             assert results["finish-train"], "This {:} arch seed={:} does not finish train on {:} ::: {:}".format( | ||||
|                 arch_index, used_seed, dataset, checkpoint_path | ||||
|             ) | ||||
|             arch_config = { | ||||
|                 "channel": results["channel"], | ||||
|                 "num_cells": results["num_cells"], | ||||
|                 "arch_str": arch_str, | ||||
|                 "class_num": results["config"]["class_num"], | ||||
|             } | ||||
|  | ||||
|             xresult = create_result_count(used_seed, dataset, arch_config, results, dataloader_dict) | ||||
|             information.update(dataset, int(used_seed), xresult) | ||||
|         if ok_dataset == 0: | ||||
|             raise ValueError("{:} does not find any data".format(checkpoint_path)) | ||||
|     return information | ||||
|  | ||||
|  | ||||
| def correct_time_related_info(arch_index: int, arch_info_full: ArchResults, arch_info_less: ArchResults): | ||||
|   # calibrate the latency based on NAS-Bench-201-v1_0-e61699.pth | ||||
|   cifar010_latency = (api.get_latency(arch_index, 'cifar10-valid', hp='200') + api.get_latency(arch_index, 'cifar10', hp='200')) / 2 | ||||
|   arch_info_full.reset_latency('cifar10-valid', None, cifar010_latency) | ||||
|   arch_info_full.reset_latency('cifar10', None, cifar010_latency) | ||||
|   arch_info_less.reset_latency('cifar10-valid', None, cifar010_latency) | ||||
|   arch_info_less.reset_latency('cifar10', None, cifar010_latency) | ||||
|     # calibrate the latency based on NAS-Bench-201-v1_0-e61699.pth | ||||
|     cifar010_latency = ( | ||||
|         api.get_latency(arch_index, "cifar10-valid", hp="200") + api.get_latency(arch_index, "cifar10", hp="200") | ||||
|     ) / 2 | ||||
|     arch_info_full.reset_latency("cifar10-valid", None, cifar010_latency) | ||||
|     arch_info_full.reset_latency("cifar10", None, cifar010_latency) | ||||
|     arch_info_less.reset_latency("cifar10-valid", None, cifar010_latency) | ||||
|     arch_info_less.reset_latency("cifar10", None, cifar010_latency) | ||||
|  | ||||
|   cifar100_latency = api.get_latency(arch_index, 'cifar100', hp='200') | ||||
|   arch_info_full.reset_latency('cifar100', None, cifar100_latency) | ||||
|   arch_info_less.reset_latency('cifar100', None, cifar100_latency) | ||||
|     cifar100_latency = api.get_latency(arch_index, "cifar100", hp="200") | ||||
|     arch_info_full.reset_latency("cifar100", None, cifar100_latency) | ||||
|     arch_info_less.reset_latency("cifar100", None, cifar100_latency) | ||||
|  | ||||
|   image_latency = api.get_latency(arch_index, 'ImageNet16-120', hp='200') | ||||
|   arch_info_full.reset_latency('ImageNet16-120', None, image_latency) | ||||
|   arch_info_less.reset_latency('ImageNet16-120', None, image_latency) | ||||
|     image_latency = api.get_latency(arch_index, "ImageNet16-120", hp="200") | ||||
|     arch_info_full.reset_latency("ImageNet16-120", None, image_latency) | ||||
|     arch_info_less.reset_latency("ImageNet16-120", None, image_latency) | ||||
|  | ||||
|   train_per_epoch_time = list(arch_info_less.query('cifar10-valid', 777).train_times.values()) | ||||
|   train_per_epoch_time = sum(train_per_epoch_time) / len(train_per_epoch_time) | ||||
|   eval_ori_test_time, eval_x_valid_time = [], [] | ||||
|   for key, value in arch_info_less.query('cifar10-valid', 777).eval_times.items(): | ||||
|     if key.startswith('ori-test@'): | ||||
|       eval_ori_test_time.append(value) | ||||
|     elif key.startswith('x-valid@'): | ||||
|       eval_x_valid_time.append(value) | ||||
|     else: raise ValueError('-- {:} --'.format(key)) | ||||
|   eval_ori_test_time, eval_x_valid_time = float(np.mean(eval_ori_test_time)), float(np.mean(eval_x_valid_time)) | ||||
|   nums = {'ImageNet16-120-train': 151700, 'ImageNet16-120-valid': 3000, 'ImageNet16-120-test': 6000, | ||||
|           'cifar10-valid-train': 25000, 'cifar10-valid-valid': 25000, | ||||
|           'cifar10-train': 50000, 'cifar10-test': 10000, | ||||
|           'cifar100-train': 50000, 'cifar100-test': 10000, 'cifar100-valid': 5000} | ||||
|   eval_per_sample = (eval_ori_test_time + eval_x_valid_time) / (nums['cifar10-valid-valid'] + nums['cifar10-test']) | ||||
|   for arch_info in [arch_info_less, arch_info_full]: | ||||
|     arch_info.reset_pseudo_train_times('cifar10-valid', None, | ||||
|                                        train_per_epoch_time / nums['cifar10-valid-train'] * nums['cifar10-valid-train']) | ||||
|     arch_info.reset_pseudo_train_times('cifar10', None, | ||||
|                                        train_per_epoch_time / nums['cifar10-valid-train'] * nums['cifar10-train']) | ||||
|     arch_info.reset_pseudo_train_times('cifar100', None, | ||||
|                                        train_per_epoch_time / nums['cifar10-valid-train'] * nums['cifar100-train']) | ||||
|     arch_info.reset_pseudo_train_times('ImageNet16-120', None, | ||||
|                                        train_per_epoch_time / nums['cifar10-valid-train'] * nums['ImageNet16-120-train']) | ||||
|     arch_info.reset_pseudo_eval_times('cifar10-valid', None, 'x-valid', eval_per_sample*nums['cifar10-valid-valid']) | ||||
|     arch_info.reset_pseudo_eval_times('cifar10-valid', None, 'ori-test', eval_per_sample * nums['cifar10-test']) | ||||
|     arch_info.reset_pseudo_eval_times('cifar10', None, 'ori-test', eval_per_sample * nums['cifar10-test']) | ||||
|     arch_info.reset_pseudo_eval_times('cifar100', None, 'x-valid', eval_per_sample * nums['cifar100-valid']) | ||||
|     arch_info.reset_pseudo_eval_times('cifar100', None, 'x-test', eval_per_sample * nums['cifar100-valid']) | ||||
|     arch_info.reset_pseudo_eval_times('cifar100', None, 'ori-test', eval_per_sample * nums['cifar100-test']) | ||||
|     arch_info.reset_pseudo_eval_times('ImageNet16-120', None, 'x-valid', eval_per_sample * nums['ImageNet16-120-valid']) | ||||
|     arch_info.reset_pseudo_eval_times('ImageNet16-120', None, 'x-test', eval_per_sample * nums['ImageNet16-120-valid']) | ||||
|     arch_info.reset_pseudo_eval_times('ImageNet16-120', None, 'ori-test', eval_per_sample * nums['ImageNet16-120-test']) | ||||
|   # arch_info_full.debug_test() | ||||
|   # arch_info_less.debug_test() | ||||
|   return arch_info_full, arch_info_less | ||||
|     train_per_epoch_time = list(arch_info_less.query("cifar10-valid", 777).train_times.values()) | ||||
|     train_per_epoch_time = sum(train_per_epoch_time) / len(train_per_epoch_time) | ||||
|     eval_ori_test_time, eval_x_valid_time = [], [] | ||||
|     for key, value in arch_info_less.query("cifar10-valid", 777).eval_times.items(): | ||||
|         if key.startswith("ori-test@"): | ||||
|             eval_ori_test_time.append(value) | ||||
|         elif key.startswith("x-valid@"): | ||||
|             eval_x_valid_time.append(value) | ||||
|         else: | ||||
|             raise ValueError("-- {:} --".format(key)) | ||||
|     eval_ori_test_time, eval_x_valid_time = float(np.mean(eval_ori_test_time)), float(np.mean(eval_x_valid_time)) | ||||
|     nums = { | ||||
|         "ImageNet16-120-train": 151700, | ||||
|         "ImageNet16-120-valid": 3000, | ||||
|         "ImageNet16-120-test": 6000, | ||||
|         "cifar10-valid-train": 25000, | ||||
|         "cifar10-valid-valid": 25000, | ||||
|         "cifar10-train": 50000, | ||||
|         "cifar10-test": 10000, | ||||
|         "cifar100-train": 50000, | ||||
|         "cifar100-test": 10000, | ||||
|         "cifar100-valid": 5000, | ||||
|     } | ||||
|     eval_per_sample = (eval_ori_test_time + eval_x_valid_time) / (nums["cifar10-valid-valid"] + nums["cifar10-test"]) | ||||
|     for arch_info in [arch_info_less, arch_info_full]: | ||||
|         arch_info.reset_pseudo_train_times( | ||||
|             "cifar10-valid", None, train_per_epoch_time / nums["cifar10-valid-train"] * nums["cifar10-valid-train"] | ||||
|         ) | ||||
|         arch_info.reset_pseudo_train_times( | ||||
|             "cifar10", None, train_per_epoch_time / nums["cifar10-valid-train"] * nums["cifar10-train"] | ||||
|         ) | ||||
|         arch_info.reset_pseudo_train_times( | ||||
|             "cifar100", None, train_per_epoch_time / nums["cifar10-valid-train"] * nums["cifar100-train"] | ||||
|         ) | ||||
|         arch_info.reset_pseudo_train_times( | ||||
|             "ImageNet16-120", None, train_per_epoch_time / nums["cifar10-valid-train"] * nums["ImageNet16-120-train"] | ||||
|         ) | ||||
|         arch_info.reset_pseudo_eval_times( | ||||
|             "cifar10-valid", None, "x-valid", eval_per_sample * nums["cifar10-valid-valid"] | ||||
|         ) | ||||
|         arch_info.reset_pseudo_eval_times("cifar10-valid", None, "ori-test", eval_per_sample * nums["cifar10-test"]) | ||||
|         arch_info.reset_pseudo_eval_times("cifar10", None, "ori-test", eval_per_sample * nums["cifar10-test"]) | ||||
|         arch_info.reset_pseudo_eval_times("cifar100", None, "x-valid", eval_per_sample * nums["cifar100-valid"]) | ||||
|         arch_info.reset_pseudo_eval_times("cifar100", None, "x-test", eval_per_sample * nums["cifar100-valid"]) | ||||
|         arch_info.reset_pseudo_eval_times("cifar100", None, "ori-test", eval_per_sample * nums["cifar100-test"]) | ||||
|         arch_info.reset_pseudo_eval_times( | ||||
|             "ImageNet16-120", None, "x-valid", eval_per_sample * nums["ImageNet16-120-valid"] | ||||
|         ) | ||||
|         arch_info.reset_pseudo_eval_times( | ||||
|             "ImageNet16-120", None, "x-test", eval_per_sample * nums["ImageNet16-120-valid"] | ||||
|         ) | ||||
|         arch_info.reset_pseudo_eval_times( | ||||
|             "ImageNet16-120", None, "ori-test", eval_per_sample * nums["ImageNet16-120-test"] | ||||
|         ) | ||||
|     # arch_info_full.debug_test() | ||||
|     # arch_info_less.debug_test() | ||||
|     return arch_info_full, arch_info_less | ||||
|  | ||||
|  | ||||
| def simplify(save_dir, meta_file, basestr, target_dir): | ||||
|   meta_infos     = torch.load(meta_file, map_location='cpu') | ||||
|   meta_archs     = meta_infos['archs']  # a list of architecture strings | ||||
|   meta_num_archs = meta_infos['total'] | ||||
|   assert meta_num_archs == len(meta_archs), 'invalid number of archs : {:} vs {:}'.format(meta_num_archs, len(meta_archs)) | ||||
|     meta_infos = torch.load(meta_file, map_location="cpu") | ||||
|     meta_archs = meta_infos["archs"]  # a list of architecture strings | ||||
|     meta_num_archs = meta_infos["total"] | ||||
|     assert meta_num_archs == len(meta_archs), "invalid number of archs : {:} vs {:}".format( | ||||
|         meta_num_archs, len(meta_archs) | ||||
|     ) | ||||
|  | ||||
|   sub_model_dirs = sorted(list(save_dir.glob('*-*-{:}'.format(basestr)))) | ||||
|   print ('{:} find {:} directories used to save checkpoints'.format(time_string(), len(sub_model_dirs))) | ||||
|    | ||||
|   subdir2archs, num_evaluated_arch = collections.OrderedDict(), 0 | ||||
|   num_seeds = defaultdict(lambda: 0) | ||||
|   for index, sub_dir in enumerate(sub_model_dirs): | ||||
|     xcheckpoints = list(sub_dir.glob('arch-*-seed-*.pth')) | ||||
|     arch_indexes = set() | ||||
|     for checkpoint in xcheckpoints: | ||||
|       temp_names = checkpoint.name.split('-') | ||||
|       assert len(temp_names) == 4 and temp_names[0] == 'arch' and temp_names[2] == 'seed', 'invalid checkpoint name : {:}'.format(checkpoint.name) | ||||
|       arch_indexes.add( temp_names[1] ) | ||||
|     subdir2archs[sub_dir] = sorted(list(arch_indexes)) | ||||
|     num_evaluated_arch   += len(arch_indexes) | ||||
|     # count number of seeds for each architecture | ||||
|     for arch_index in arch_indexes: | ||||
|       num_seeds[ len(list(sub_dir.glob('arch-{:}-seed-*.pth'.format(arch_index)))) ] += 1 | ||||
|   print('{:} There are {:5d} architectures that have been evaluated ({:} in total).'.format(time_string(), num_evaluated_arch, meta_num_archs)) | ||||
|   for key in sorted( list( num_seeds.keys() ) ): print ('{:} There are {:5d} architectures that are evaluated {:} times.'.format(time_string(), num_seeds[key], key)) | ||||
|     sub_model_dirs = sorted(list(save_dir.glob("*-*-{:}".format(basestr)))) | ||||
|     print("{:} find {:} directories used to save checkpoints".format(time_string(), len(sub_model_dirs))) | ||||
|  | ||||
|   dataloader_dict = get_nas_bench_loaders( 6 ) | ||||
|   to_save_simply = save_dir / 'simplifies' | ||||
|   to_save_allarc = save_dir / 'simplifies' / 'architectures' | ||||
|   if not to_save_simply.exists(): to_save_simply.mkdir(parents=True, exist_ok=True) | ||||
|   if not to_save_allarc.exists(): to_save_allarc.mkdir(parents=True, exist_ok=True) | ||||
|     subdir2archs, num_evaluated_arch = collections.OrderedDict(), 0 | ||||
|     num_seeds = defaultdict(lambda: 0) | ||||
|     for index, sub_dir in enumerate(sub_model_dirs): | ||||
|         xcheckpoints = list(sub_dir.glob("arch-*-seed-*.pth")) | ||||
|         arch_indexes = set() | ||||
|         for checkpoint in xcheckpoints: | ||||
|             temp_names = checkpoint.name.split("-") | ||||
|             assert ( | ||||
|                 len(temp_names) == 4 and temp_names[0] == "arch" and temp_names[2] == "seed" | ||||
|             ), "invalid checkpoint name : {:}".format(checkpoint.name) | ||||
|             arch_indexes.add(temp_names[1]) | ||||
|         subdir2archs[sub_dir] = sorted(list(arch_indexes)) | ||||
|         num_evaluated_arch += len(arch_indexes) | ||||
|         # count number of seeds for each architecture | ||||
|         for arch_index in arch_indexes: | ||||
|             num_seeds[len(list(sub_dir.glob("arch-{:}-seed-*.pth".format(arch_index))))] += 1 | ||||
|     print( | ||||
|         "{:} There are {:5d} architectures that have been evaluated ({:} in total).".format( | ||||
|             time_string(), num_evaluated_arch, meta_num_archs | ||||
|         ) | ||||
|     ) | ||||
|     for key in sorted(list(num_seeds.keys())): | ||||
|         print( | ||||
|             "{:} There are {:5d} architectures that are evaluated {:} times.".format(time_string(), num_seeds[key], key) | ||||
|         ) | ||||
|  | ||||
|   assert (save_dir / target_dir) in subdir2archs, 'can not find {:}'.format(target_dir) | ||||
|   arch2infos, datasets = {}, ('cifar10-valid', 'cifar10', 'cifar100', 'ImageNet16-120') | ||||
|   evaluated_indexes    = set() | ||||
|   target_full_dir      = save_dir / target_dir | ||||
|   target_less_dir      = save_dir / '{:}-LESS'.format(target_dir) | ||||
|   arch_indexes         = subdir2archs[ target_full_dir ] | ||||
|   num_seeds            = defaultdict(lambda: 0) | ||||
|   end_time             = time.time() | ||||
|   arch_time            = AverageMeter() | ||||
|   for idx, arch_index in enumerate(arch_indexes): | ||||
|     checkpoints = list(target_full_dir.glob('arch-{:}-seed-*.pth'.format(arch_index))) | ||||
|     ckps_less   = list(target_less_dir.glob('arch-{:}-seed-*.pth'.format(arch_index))) | ||||
|     # create the arch info for each architecture | ||||
|     try: | ||||
|       arch_info_full = account_one_arch(arch_index, meta_archs[int(arch_index)], checkpoints, datasets, dataloader_dict) | ||||
|       arch_info_less = account_one_arch(arch_index, meta_archs[int(arch_index)], ckps_less, datasets, dataloader_dict) | ||||
|       num_seeds[ len(checkpoints) ] += 1 | ||||
|     except: | ||||
|       print('Loading {:} failed, : {:}'.format(arch_index, checkpoints)) | ||||
|       continue | ||||
|     assert int(arch_index) not in evaluated_indexes, 'conflict arch-index : {:}'.format(arch_index) | ||||
|     assert 0 <= int(arch_index) < len(meta_archs), 'invalid arch-index {:} (not found in meta_archs)'.format(arch_index) | ||||
|     arch_info = {'full': arch_info_full, 'less': arch_info_less} | ||||
|     evaluated_indexes.add(int(arch_index)) | ||||
|     arch2infos[int(arch_index)] = arch_info | ||||
|     # to correct the latency and training_time info. | ||||
|     arch_info_full, arch_info_less = correct_time_related_info(int(arch_index), arch_info_full, arch_info_less) | ||||
|     to_save_data = OrderedDict(full=arch_info_full.state_dict(), less=arch_info_less.state_dict()) | ||||
|     torch.save(to_save_data, to_save_allarc / '{:}-FULL.pth'.format(arch_index)) | ||||
|     arch_info['full'].clear_params() | ||||
|     arch_info['less'].clear_params() | ||||
|     torch.save(to_save_data, to_save_allarc / '{:}-SIMPLE.pth'.format(arch_index)) | ||||
|     # measure elapsed time | ||||
|     arch_time.update(time.time() - end_time) | ||||
|     end_time  = time.time() | ||||
|     need_time = '{:}'.format( convert_secs2time(arch_time.avg * (len(arch_indexes)-idx-1), True) ) | ||||
|     print('{:} {:} [{:03d}/{:03d}] : {:} still need {:}'.format(time_string(), target_dir, idx, len(arch_indexes), arch_index, need_time)) | ||||
|   # measure time | ||||
|   xstrs = ['{:}:{:03d}'.format(key, num_seeds[key]) for key in sorted( list( num_seeds.keys() ) ) ] | ||||
|   print('{:} {:} done : {:}'.format(time_string(), target_dir, xstrs)) | ||||
|   final_infos = {'meta_archs' : meta_archs, | ||||
|                  'total_archs': meta_num_archs, | ||||
|                  'basestr'    : basestr, | ||||
|                  'arch2infos' : arch2infos, | ||||
|                  'evaluated_indexes': evaluated_indexes} | ||||
|   save_file_name = to_save_simply / '{:}.pth'.format(target_dir) | ||||
|   torch.save(final_infos, save_file_name) | ||||
|   print ('Save {:} / {:} architecture results into {:}.'.format(len(evaluated_indexes), meta_num_archs, save_file_name)) | ||||
|     dataloader_dict = get_nas_bench_loaders(6) | ||||
|     to_save_simply = save_dir / "simplifies" | ||||
|     to_save_allarc = save_dir / "simplifies" / "architectures" | ||||
|     if not to_save_simply.exists(): | ||||
|         to_save_simply.mkdir(parents=True, exist_ok=True) | ||||
|     if not to_save_allarc.exists(): | ||||
|         to_save_allarc.mkdir(parents=True, exist_ok=True) | ||||
|  | ||||
|     assert (save_dir / target_dir) in subdir2archs, "can not find {:}".format(target_dir) | ||||
|     arch2infos, datasets = {}, ("cifar10-valid", "cifar10", "cifar100", "ImageNet16-120") | ||||
|     evaluated_indexes = set() | ||||
|     target_full_dir = save_dir / target_dir | ||||
|     target_less_dir = save_dir / "{:}-LESS".format(target_dir) | ||||
|     arch_indexes = subdir2archs[target_full_dir] | ||||
|     num_seeds = defaultdict(lambda: 0) | ||||
|     end_time = time.time() | ||||
|     arch_time = AverageMeter() | ||||
|     for idx, arch_index in enumerate(arch_indexes): | ||||
|         checkpoints = list(target_full_dir.glob("arch-{:}-seed-*.pth".format(arch_index))) | ||||
|         ckps_less = list(target_less_dir.glob("arch-{:}-seed-*.pth".format(arch_index))) | ||||
|         # create the arch info for each architecture | ||||
|         try: | ||||
|             arch_info_full = account_one_arch( | ||||
|                 arch_index, meta_archs[int(arch_index)], checkpoints, datasets, dataloader_dict | ||||
|             ) | ||||
|             arch_info_less = account_one_arch( | ||||
|                 arch_index, meta_archs[int(arch_index)], ckps_less, datasets, dataloader_dict | ||||
|             ) | ||||
|             num_seeds[len(checkpoints)] += 1 | ||||
|         except: | ||||
|             print("Loading {:} failed, : {:}".format(arch_index, checkpoints)) | ||||
|             continue | ||||
|         assert int(arch_index) not in evaluated_indexes, "conflict arch-index : {:}".format(arch_index) | ||||
|         assert 0 <= int(arch_index) < len(meta_archs), "invalid arch-index {:} (not found in meta_archs)".format( | ||||
|             arch_index | ||||
|         ) | ||||
|         arch_info = {"full": arch_info_full, "less": arch_info_less} | ||||
|         evaluated_indexes.add(int(arch_index)) | ||||
|         arch2infos[int(arch_index)] = arch_info | ||||
|         # to correct the latency and training_time info. | ||||
|         arch_info_full, arch_info_less = correct_time_related_info(int(arch_index), arch_info_full, arch_info_less) | ||||
|         to_save_data = OrderedDict(full=arch_info_full.state_dict(), less=arch_info_less.state_dict()) | ||||
|         torch.save(to_save_data, to_save_allarc / "{:}-FULL.pth".format(arch_index)) | ||||
|         arch_info["full"].clear_params() | ||||
|         arch_info["less"].clear_params() | ||||
|         torch.save(to_save_data, to_save_allarc / "{:}-SIMPLE.pth".format(arch_index)) | ||||
|         # measure elapsed time | ||||
|         arch_time.update(time.time() - end_time) | ||||
|         end_time = time.time() | ||||
|         need_time = "{:}".format(convert_secs2time(arch_time.avg * (len(arch_indexes) - idx - 1), True)) | ||||
|         print( | ||||
|             "{:} {:} [{:03d}/{:03d}] : {:} still need {:}".format( | ||||
|                 time_string(), target_dir, idx, len(arch_indexes), arch_index, need_time | ||||
|             ) | ||||
|         ) | ||||
|     # measure time | ||||
|     xstrs = ["{:}:{:03d}".format(key, num_seeds[key]) for key in sorted(list(num_seeds.keys()))] | ||||
|     print("{:} {:} done : {:}".format(time_string(), target_dir, xstrs)) | ||||
|     final_infos = { | ||||
|         "meta_archs": meta_archs, | ||||
|         "total_archs": meta_num_archs, | ||||
|         "basestr": basestr, | ||||
|         "arch2infos": arch2infos, | ||||
|         "evaluated_indexes": evaluated_indexes, | ||||
|     } | ||||
|     save_file_name = to_save_simply / "{:}.pth".format(target_dir) | ||||
|     torch.save(final_infos, save_file_name) | ||||
|     print( | ||||
|         "Save {:} / {:} architecture results into {:}.".format(len(evaluated_indexes), meta_num_archs, save_file_name) | ||||
|     ) | ||||
|  | ||||
|  | ||||
| def merge_all(save_dir, meta_file, basestr): | ||||
|   meta_infos     = torch.load(meta_file, map_location='cpu') | ||||
|   meta_archs     = meta_infos['archs'] | ||||
|   meta_num_archs = meta_infos['total'] | ||||
|   assert meta_num_archs == len(meta_archs), 'invalid number of archs : {:} vs {:}'.format(meta_num_archs, len(meta_archs)) | ||||
|     meta_infos = torch.load(meta_file, map_location="cpu") | ||||
|     meta_archs = meta_infos["archs"] | ||||
|     meta_num_archs = meta_infos["total"] | ||||
|     assert meta_num_archs == len(meta_archs), "invalid number of archs : {:} vs {:}".format( | ||||
|         meta_num_archs, len(meta_archs) | ||||
|     ) | ||||
|  | ||||
|   sub_model_dirs = sorted(list(save_dir.glob('*-*-{:}'.format(basestr)))) | ||||
|   print ('{:} find {:} directories used to save checkpoints'.format(time_string(), len(sub_model_dirs))) | ||||
|   for index, sub_dir in enumerate(sub_model_dirs): | ||||
|     arch_info_files = sorted( list(sub_dir.glob('arch-*-seed-*.pth') ) ) | ||||
|     print ('The {:02d}/{:02d}-th directory : {:} : {:} runs.'.format(index, len(sub_model_dirs), sub_dir, len(arch_info_files))) | ||||
|    | ||||
|   arch2infos, evaluated_indexes = dict(), set() | ||||
|   for IDX, sub_dir in enumerate(sub_model_dirs): | ||||
|     ckp_path = sub_dir.parent / 'simplifies' / '{:}.pth'.format(sub_dir.name) | ||||
|     if ckp_path.exists(): | ||||
|       sub_ckps = torch.load(ckp_path, map_location='cpu') | ||||
|       assert sub_ckps['total_archs'] == meta_num_archs and sub_ckps['basestr'] == basestr | ||||
|       xarch2infos = sub_ckps['arch2infos'] | ||||
|       xevalindexs = sub_ckps['evaluated_indexes'] | ||||
|       for eval_index in xevalindexs: | ||||
|         assert eval_index not in evaluated_indexes and eval_index not in arch2infos | ||||
|         #arch2infos[eval_index] = xarch2infos[eval_index].state_dict() | ||||
|         arch2infos[eval_index] = {'full': xarch2infos[eval_index]['full'].state_dict(), | ||||
|                                   'less': xarch2infos[eval_index]['less'].state_dict()} | ||||
|         evaluated_indexes.add( eval_index ) | ||||
|       print ('{:} [{:03d}/{:03d}] merge data from {:} with {:} models.'.format(time_string(), IDX, len(sub_model_dirs), ckp_path, len(xevalindexs))) | ||||
|     sub_model_dirs = sorted(list(save_dir.glob("*-*-{:}".format(basestr)))) | ||||
|     print("{:} find {:} directories used to save checkpoints".format(time_string(), len(sub_model_dirs))) | ||||
|     for index, sub_dir in enumerate(sub_model_dirs): | ||||
|         arch_info_files = sorted(list(sub_dir.glob("arch-*-seed-*.pth"))) | ||||
|         print( | ||||
|             "The {:02d}/{:02d}-th directory : {:} : {:} runs.".format( | ||||
|                 index, len(sub_model_dirs), sub_dir, len(arch_info_files) | ||||
|             ) | ||||
|         ) | ||||
|  | ||||
|     arch2infos, evaluated_indexes = dict(), set() | ||||
|     for IDX, sub_dir in enumerate(sub_model_dirs): | ||||
|         ckp_path = sub_dir.parent / "simplifies" / "{:}.pth".format(sub_dir.name) | ||||
|         if ckp_path.exists(): | ||||
|             sub_ckps = torch.load(ckp_path, map_location="cpu") | ||||
|             assert sub_ckps["total_archs"] == meta_num_archs and sub_ckps["basestr"] == basestr | ||||
|             xarch2infos = sub_ckps["arch2infos"] | ||||
|             xevalindexs = sub_ckps["evaluated_indexes"] | ||||
|             for eval_index in xevalindexs: | ||||
|                 assert eval_index not in evaluated_indexes and eval_index not in arch2infos | ||||
|                 # arch2infos[eval_index] = xarch2infos[eval_index].state_dict() | ||||
|                 arch2infos[eval_index] = { | ||||
|                     "full": xarch2infos[eval_index]["full"].state_dict(), | ||||
|                     "less": xarch2infos[eval_index]["less"].state_dict(), | ||||
|                 } | ||||
|                 evaluated_indexes.add(eval_index) | ||||
|             print( | ||||
|                 "{:} [{:03d}/{:03d}] merge data from {:} with {:} models.".format( | ||||
|                     time_string(), IDX, len(sub_model_dirs), ckp_path, len(xevalindexs) | ||||
|                 ) | ||||
|             ) | ||||
|         else: | ||||
|             raise ValueError("Can not find {:}".format(ckp_path)) | ||||
|             # print ('{:} [{:03d}/{:03d}] can not find {:}, skip.'.format(time_string(), IDX, len(subdir2archs), ckp_path)) | ||||
|  | ||||
|     evaluated_indexes = sorted(list(evaluated_indexes)) | ||||
|     print("Finally, there are {:} architectures that have been trained and evaluated.".format(len(evaluated_indexes))) | ||||
|  | ||||
|     to_save_simply = save_dir / "simplifies" | ||||
|     if not to_save_simply.exists(): | ||||
|         to_save_simply.mkdir(parents=True, exist_ok=True) | ||||
|     final_infos = { | ||||
|         "meta_archs": meta_archs, | ||||
|         "total_archs": meta_num_archs, | ||||
|         "arch2infos": arch2infos, | ||||
|         "evaluated_indexes": evaluated_indexes, | ||||
|     } | ||||
|     save_file_name = to_save_simply / "{:}-final-infos.pth".format(basestr) | ||||
|     torch.save(final_infos, save_file_name) | ||||
|     print( | ||||
|         "Save {:} / {:} architecture results into {:}.".format(len(evaluated_indexes), meta_num_archs, save_file_name) | ||||
|     ) | ||||
|  | ||||
|  | ||||
| if __name__ == "__main__": | ||||
|  | ||||
|     parser = argparse.ArgumentParser( | ||||
|         description="NAS-BENCH-201", formatter_class=argparse.ArgumentDefaultsHelpFormatter | ||||
|     ) | ||||
|     parser.add_argument("--mode", type=str, choices=["cal", "merge"], help="The running mode for this script.") | ||||
|     parser.add_argument( | ||||
|         "--base_save_dir", | ||||
|         type=str, | ||||
|         default="./output/NAS-BENCH-201-4", | ||||
|         help="The base-name of folder to save checkpoints and log.", | ||||
|     ) | ||||
|     parser.add_argument("--target_dir", type=str, help="The target directory.") | ||||
|     parser.add_argument("--max_node", type=int, default=4, help="The maximum node in a cell.") | ||||
|     parser.add_argument("--channel", type=int, default=16, help="The number of channels.") | ||||
|     parser.add_argument("--num_cells", type=int, default=5, help="The number of cells in one stage.") | ||||
|     args = parser.parse_args() | ||||
|  | ||||
|     save_dir = Path(args.base_save_dir) | ||||
|     meta_path = save_dir / "meta-node-{:}.pth".format(args.max_node) | ||||
|     assert save_dir.exists(), "invalid save dir path : {:}".format(save_dir) | ||||
|     assert meta_path.exists(), "invalid saved meta path : {:}".format(meta_path) | ||||
|     print("start the statistics of our nas-benchmark from {:} using {:}.".format(save_dir, args.target_dir)) | ||||
|     basestr = "C{:}-N{:}".format(args.channel, args.num_cells) | ||||
|  | ||||
|     if args.mode == "cal": | ||||
|         simplify(save_dir, meta_path, basestr, args.target_dir) | ||||
|     elif args.mode == "merge": | ||||
|         merge_all(save_dir, meta_path, basestr) | ||||
|     else: | ||||
|       raise ValueError('Can not find {:}'.format(ckp_path)) | ||||
|       #print ('{:} [{:03d}/{:03d}] can not find {:}, skip.'.format(time_string(), IDX, len(subdir2archs), ckp_path)) | ||||
|  | ||||
|   evaluated_indexes = sorted( list( evaluated_indexes ) ) | ||||
|   print ('Finally, there are {:} architectures that have been trained and evaluated.'.format(len(evaluated_indexes))) | ||||
|  | ||||
|   to_save_simply = save_dir / 'simplifies' | ||||
|   if not to_save_simply.exists(): to_save_simply.mkdir(parents=True, exist_ok=True) | ||||
|   final_infos = {'meta_archs' : meta_archs, | ||||
|                  'total_archs': meta_num_archs, | ||||
|                  'arch2infos' : arch2infos, | ||||
|                  'evaluated_indexes': evaluated_indexes} | ||||
|   save_file_name = to_save_simply / '{:}-final-infos.pth'.format(basestr) | ||||
|   torch.save(final_infos, save_file_name) | ||||
|   print ('Save {:} / {:} architecture results into {:}.'.format(len(evaluated_indexes), meta_num_archs, save_file_name)) | ||||
|  | ||||
|  | ||||
| if __name__ == '__main__': | ||||
|  | ||||
|   parser = argparse.ArgumentParser(description='NAS-BENCH-201', formatter_class=argparse.ArgumentDefaultsHelpFormatter) | ||||
|   parser.add_argument('--mode'         ,  type=str, choices=['cal', 'merge'],            help='The running mode for this script.') | ||||
|   parser.add_argument('--base_save_dir',  type=str, default='./output/NAS-BENCH-201-4',  help='The base-name of folder to save checkpoints and log.') | ||||
|   parser.add_argument('--target_dir'   ,  type=str,                                      help='The target directory.') | ||||
|   parser.add_argument('--max_node'     ,  type=int, default=4,                           help='The maximum node in a cell.') | ||||
|   parser.add_argument('--channel'      ,  type=int, default=16,                          help='The number of channels.') | ||||
|   parser.add_argument('--num_cells'    ,  type=int, default=5,                           help='The number of cells in one stage.') | ||||
|   args = parser.parse_args() | ||||
|    | ||||
|   save_dir  = Path(args.base_save_dir) | ||||
|   meta_path = save_dir / 'meta-node-{:}.pth'.format(args.max_node) | ||||
|   assert save_dir.exists(),  'invalid save dir path : {:}'.format(save_dir) | ||||
|   assert meta_path.exists(), 'invalid saved meta path : {:}'.format(meta_path) | ||||
|   print ('start the statistics of our nas-benchmark from {:} using {:}.'.format(save_dir, args.target_dir)) | ||||
|   basestr   = 'C{:}-N{:}'.format(args.channel, args.num_cells) | ||||
|    | ||||
|   if args.mode == 'cal': | ||||
|     simplify(save_dir, meta_path, basestr, args.target_dir) | ||||
|   elif args.mode == 'merge': | ||||
|     merge_all(save_dir, meta_path, basestr) | ||||
|   else: | ||||
|     raise ValueError('invalid mode : {:}'.format(args.mode)) | ||||
|         raise ValueError("invalid mode : {:}".format(args.mode)) | ||||
|   | ||||
| @@ -6,284 +6,504 @@ from copy import deepcopy | ||||
| import torch | ||||
| from pathlib import Path | ||||
| from collections import defaultdict | ||||
| lib_dir = (Path(__file__).parent / '..' / '..' / 'lib').resolve() | ||||
| if str(lib_dir) not in sys.path: sys.path.insert(0, str(lib_dir)) | ||||
| from log_utils    import AverageMeter, time_string, convert_secs2time | ||||
|  | ||||
| lib_dir = (Path(__file__).parent / ".." / ".." / "lib").resolve() | ||||
| if str(lib_dir) not in sys.path: | ||||
|     sys.path.insert(0, str(lib_dir)) | ||||
| from log_utils import AverageMeter, time_string, convert_secs2time | ||||
| from config_utils import load_config, dict2config | ||||
| from datasets     import get_datasets | ||||
| from datasets import get_datasets | ||||
|  | ||||
| # NAS-Bench-201 related module or function | ||||
| from models       import CellStructure, get_cell_based_tiny_net | ||||
| from nas_201_api  import ArchResults, ResultsCount | ||||
| from procedures   import bench_pure_evaluate as pure_evaluate | ||||
| from models import CellStructure, get_cell_based_tiny_net | ||||
| from nas_201_api import ArchResults, ResultsCount | ||||
| from procedures import bench_pure_evaluate as pure_evaluate | ||||
|  | ||||
|  | ||||
| def create_result_count(used_seed, dataset, arch_config, results, dataloader_dict): | ||||
|   xresult     = ResultsCount(dataset, results['net_state_dict'], results['train_acc1es'], results['train_losses'], \ | ||||
|                                results['param'], results['flop'], arch_config, used_seed, results['total_epoch'], None) | ||||
|     xresult = ResultsCount( | ||||
|         dataset, | ||||
|         results["net_state_dict"], | ||||
|         results["train_acc1es"], | ||||
|         results["train_losses"], | ||||
|         results["param"], | ||||
|         results["flop"], | ||||
|         arch_config, | ||||
|         used_seed, | ||||
|         results["total_epoch"], | ||||
|         None, | ||||
|     ) | ||||
|  | ||||
|   net_config = dict2config({'name': 'infer.tiny', 'C': arch_config['channel'], 'N': arch_config['num_cells'], 'genotype': CellStructure.str2structure(arch_config['arch_str']), 'num_classes':arch_config['class_num']}, None) | ||||
|   network = get_cell_based_tiny_net(net_config) | ||||
|   network.load_state_dict(xresult.get_net_param()) | ||||
|   if 'train_times' in results: # new version | ||||
|     xresult.update_train_info(results['train_acc1es'], results['train_acc5es'], results['train_losses'], results['train_times']) | ||||
|     xresult.update_eval(results['valid_acc1es'], results['valid_losses'], results['valid_times']) | ||||
|   else: | ||||
|     if dataset == 'cifar10-valid': | ||||
|       xresult.update_OLD_eval('x-valid' , results['valid_acc1es'], results['valid_losses']) | ||||
|       loss, top1, top5, latencies = pure_evaluate(dataloader_dict['{:}@{:}'.format('cifar10', 'test')], network.cuda()) | ||||
|       xresult.update_OLD_eval('ori-test', {results['total_epoch']-1: top1}, {results['total_epoch']-1: loss}) | ||||
|       xresult.update_latency(latencies) | ||||
|     elif dataset == 'cifar10': | ||||
|       xresult.update_OLD_eval('ori-test', results['valid_acc1es'], results['valid_losses']) | ||||
|       loss, top1, top5, latencies = pure_evaluate(dataloader_dict['{:}@{:}'.format(dataset, 'test')], network.cuda()) | ||||
|       xresult.update_latency(latencies) | ||||
|     elif dataset == 'cifar100' or dataset == 'ImageNet16-120': | ||||
|       xresult.update_OLD_eval('ori-test', results['valid_acc1es'], results['valid_losses']) | ||||
|       loss, top1, top5, latencies = pure_evaluate(dataloader_dict['{:}@{:}'.format(dataset, 'valid')], network.cuda()) | ||||
|       xresult.update_OLD_eval('x-valid', {results['total_epoch']-1: top1}, {results['total_epoch']-1: loss}) | ||||
|       loss, top1, top5, latencies = pure_evaluate(dataloader_dict['{:}@{:}'.format(dataset,  'test')], network.cuda()) | ||||
|       xresult.update_OLD_eval('x-test' , {results['total_epoch']-1: top1}, {results['total_epoch']-1: loss}) | ||||
|       xresult.update_latency(latencies) | ||||
|     net_config = dict2config( | ||||
|         { | ||||
|             "name": "infer.tiny", | ||||
|             "C": arch_config["channel"], | ||||
|             "N": arch_config["num_cells"], | ||||
|             "genotype": CellStructure.str2structure(arch_config["arch_str"]), | ||||
|             "num_classes": arch_config["class_num"], | ||||
|         }, | ||||
|         None, | ||||
|     ) | ||||
|     network = get_cell_based_tiny_net(net_config) | ||||
|     network.load_state_dict(xresult.get_net_param()) | ||||
|     if "train_times" in results:  # new version | ||||
|         xresult.update_train_info( | ||||
|             results["train_acc1es"], results["train_acc5es"], results["train_losses"], results["train_times"] | ||||
|         ) | ||||
|         xresult.update_eval(results["valid_acc1es"], results["valid_losses"], results["valid_times"]) | ||||
|     else: | ||||
|       raise ValueError('invalid dataset name : {:}'.format(dataset)) | ||||
|   return xresult | ||||
|    | ||||
|         if dataset == "cifar10-valid": | ||||
|             xresult.update_OLD_eval("x-valid", results["valid_acc1es"], results["valid_losses"]) | ||||
|             loss, top1, top5, latencies = pure_evaluate( | ||||
|                 dataloader_dict["{:}@{:}".format("cifar10", "test")], network.cuda() | ||||
|             ) | ||||
|             xresult.update_OLD_eval("ori-test", {results["total_epoch"] - 1: top1}, {results["total_epoch"] - 1: loss}) | ||||
|             xresult.update_latency(latencies) | ||||
|         elif dataset == "cifar10": | ||||
|             xresult.update_OLD_eval("ori-test", results["valid_acc1es"], results["valid_losses"]) | ||||
|             loss, top1, top5, latencies = pure_evaluate( | ||||
|                 dataloader_dict["{:}@{:}".format(dataset, "test")], network.cuda() | ||||
|             ) | ||||
|             xresult.update_latency(latencies) | ||||
|         elif dataset == "cifar100" or dataset == "ImageNet16-120": | ||||
|             xresult.update_OLD_eval("ori-test", results["valid_acc1es"], results["valid_losses"]) | ||||
|             loss, top1, top5, latencies = pure_evaluate( | ||||
|                 dataloader_dict["{:}@{:}".format(dataset, "valid")], network.cuda() | ||||
|             ) | ||||
|             xresult.update_OLD_eval("x-valid", {results["total_epoch"] - 1: top1}, {results["total_epoch"] - 1: loss}) | ||||
|             loss, top1, top5, latencies = pure_evaluate( | ||||
|                 dataloader_dict["{:}@{:}".format(dataset, "test")], network.cuda() | ||||
|             ) | ||||
|             xresult.update_OLD_eval("x-test", {results["total_epoch"] - 1: top1}, {results["total_epoch"] - 1: loss}) | ||||
|             xresult.update_latency(latencies) | ||||
|         else: | ||||
|             raise ValueError("invalid dataset name : {:}".format(dataset)) | ||||
|     return xresult | ||||
|  | ||||
|  | ||||
| def account_one_arch(arch_index, arch_str, checkpoints, datasets, dataloader_dict): | ||||
|   information = ArchResults(arch_index, arch_str) | ||||
|     information = ArchResults(arch_index, arch_str) | ||||
|  | ||||
|   for checkpoint_path in checkpoints: | ||||
|     checkpoint = torch.load(checkpoint_path, map_location='cpu') | ||||
|     used_seed  = checkpoint_path.name.split('-')[-1].split('.')[0] | ||||
|     for dataset in datasets: | ||||
|       assert dataset in checkpoint, 'Can not find {:} in arch-{:} from {:}'.format(dataset, arch_index, checkpoint_path) | ||||
|       results     = checkpoint[dataset] | ||||
|       assert results['finish-train'], 'This {:} arch seed={:} does not finish train on {:} ::: {:}'.format(arch_index, used_seed, dataset, checkpoint_path) | ||||
|       arch_config = {'channel': results['channel'], 'num_cells': results['num_cells'], 'arch_str': arch_str, 'class_num': results['config']['class_num']} | ||||
|        | ||||
|       xresult = create_result_count(used_seed, dataset, arch_config, results, dataloader_dict) | ||||
|       information.update(dataset, int(used_seed), xresult) | ||||
|   return information | ||||
|     for checkpoint_path in checkpoints: | ||||
|         checkpoint = torch.load(checkpoint_path, map_location="cpu") | ||||
|         used_seed = checkpoint_path.name.split("-")[-1].split(".")[0] | ||||
|         for dataset in datasets: | ||||
|             assert dataset in checkpoint, "Can not find {:} in arch-{:} from {:}".format( | ||||
|                 dataset, arch_index, checkpoint_path | ||||
|             ) | ||||
|             results = checkpoint[dataset] | ||||
|             assert results["finish-train"], "This {:} arch seed={:} does not finish train on {:} ::: {:}".format( | ||||
|                 arch_index, used_seed, dataset, checkpoint_path | ||||
|             ) | ||||
|             arch_config = { | ||||
|                 "channel": results["channel"], | ||||
|                 "num_cells": results["num_cells"], | ||||
|                 "arch_str": arch_str, | ||||
|                 "class_num": results["config"]["class_num"], | ||||
|             } | ||||
|  | ||||
|             xresult = create_result_count(used_seed, dataset, arch_config, results, dataloader_dict) | ||||
|             information.update(dataset, int(used_seed), xresult) | ||||
|     return information | ||||
|  | ||||
|  | ||||
| def GET_DataLoaders(workers): | ||||
|  | ||||
|   torch.set_num_threads(workers) | ||||
|     torch.set_num_threads(workers) | ||||
|  | ||||
|   root_dir  = (Path(__file__).parent / '..' / '..').resolve() | ||||
|   torch_dir = Path(os.environ['TORCH_HOME']) | ||||
|   # cifar | ||||
|   cifar_config_path = root_dir / 'configs' / 'nas-benchmark' / 'CIFAR.config' | ||||
|   cifar_config = load_config(cifar_config_path, None, None) | ||||
|   print ('{:} Create data-loader for all datasets'.format(time_string())) | ||||
|   print ('-'*200) | ||||
|   TRAIN_CIFAR10, VALID_CIFAR10, xshape, class_num = get_datasets('cifar10', str(torch_dir/'cifar.python'), -1) | ||||
|   print ('original CIFAR-10 : {:} training images and {:} test images : {:} input shape : {:} number of classes'.format(len(TRAIN_CIFAR10), len(VALID_CIFAR10), xshape, class_num)) | ||||
|   cifar10_splits = load_config(root_dir / 'configs' / 'nas-benchmark' / 'cifar-split.txt', None, None) | ||||
|   assert cifar10_splits.train[:10] == [0, 5, 7, 11, 13, 15, 16, 17, 20, 24] and cifar10_splits.valid[:10] == [1, 2, 3, 4, 6, 8, 9, 10, 12, 14] | ||||
|   temp_dataset = deepcopy(TRAIN_CIFAR10) | ||||
|   temp_dataset.transform = VALID_CIFAR10.transform | ||||
|   # data loader | ||||
|   trainval_cifar10_loader = torch.utils.data.DataLoader(TRAIN_CIFAR10, batch_size=cifar_config.batch_size, shuffle=True , num_workers=workers, pin_memory=True) | ||||
|   train_cifar10_loader    = torch.utils.data.DataLoader(TRAIN_CIFAR10, batch_size=cifar_config.batch_size, sampler=torch.utils.data.sampler.SubsetRandomSampler(cifar10_splits.train), num_workers=workers, pin_memory=True) | ||||
|   valid_cifar10_loader    = torch.utils.data.DataLoader(temp_dataset , batch_size=cifar_config.batch_size, sampler=torch.utils.data.sampler.SubsetRandomSampler(cifar10_splits.valid), num_workers=workers, pin_memory=True) | ||||
|   test__cifar10_loader    = torch.utils.data.DataLoader(VALID_CIFAR10, batch_size=cifar_config.batch_size, shuffle=False, num_workers=workers, pin_memory=True) | ||||
|   print ('CIFAR-10  : trval-loader has {:3d} batch with {:} per batch'.format(len(trainval_cifar10_loader), cifar_config.batch_size)) | ||||
|   print ('CIFAR-10  : train-loader has {:3d} batch with {:} per batch'.format(len(train_cifar10_loader), cifar_config.batch_size)) | ||||
|   print ('CIFAR-10  : valid-loader has {:3d} batch with {:} per batch'.format(len(valid_cifar10_loader), cifar_config.batch_size)) | ||||
|   print ('CIFAR-10  : test--loader has {:3d} batch with {:} per batch'.format(len(test__cifar10_loader), cifar_config.batch_size)) | ||||
|   print ('-'*200) | ||||
|   # CIFAR-100 | ||||
|   TRAIN_CIFAR100, VALID_CIFAR100, xshape, class_num = get_datasets('cifar100', str(torch_dir/'cifar.python'), -1) | ||||
|   print ('original CIFAR-100: {:} training images and {:} test images : {:} input shape : {:} number of classes'.format(len(TRAIN_CIFAR100), len(VALID_CIFAR100), xshape, class_num)) | ||||
|   cifar100_splits = load_config(root_dir / 'configs' / 'nas-benchmark' / 'cifar100-test-split.txt', None, None) | ||||
|   assert cifar100_splits.xvalid[:10] == [1, 3, 4, 5, 8, 10, 13, 14, 15, 16] and cifar100_splits.xtest[:10] == [0, 2, 6, 7, 9, 11, 12, 17, 20, 24] | ||||
|   train_cifar100_loader = torch.utils.data.DataLoader(TRAIN_CIFAR100, batch_size=cifar_config.batch_size, shuffle=True, num_workers=workers, pin_memory=True) | ||||
|   valid_cifar100_loader = torch.utils.data.DataLoader(VALID_CIFAR100, batch_size=cifar_config.batch_size, sampler=torch.utils.data.sampler.SubsetRandomSampler(cifar100_splits.xvalid), num_workers=workers, pin_memory=True) | ||||
|   test__cifar100_loader = torch.utils.data.DataLoader(VALID_CIFAR100, batch_size=cifar_config.batch_size, sampler=torch.utils.data.sampler.SubsetRandomSampler(cifar100_splits.xtest) , num_workers=workers, pin_memory=True) | ||||
|   print ('CIFAR-100  : train-loader has {:3d} batch'.format(len(train_cifar100_loader))) | ||||
|   print ('CIFAR-100  : valid-loader has {:3d} batch'.format(len(valid_cifar100_loader))) | ||||
|   print ('CIFAR-100  : test--loader has {:3d} batch'.format(len(test__cifar100_loader))) | ||||
|   print ('-'*200) | ||||
|     root_dir = (Path(__file__).parent / ".." / "..").resolve() | ||||
|     torch_dir = Path(os.environ["TORCH_HOME"]) | ||||
|     # cifar | ||||
|     cifar_config_path = root_dir / "configs" / "nas-benchmark" / "CIFAR.config" | ||||
|     cifar_config = load_config(cifar_config_path, None, None) | ||||
|     print("{:} Create data-loader for all datasets".format(time_string())) | ||||
|     print("-" * 200) | ||||
|     TRAIN_CIFAR10, VALID_CIFAR10, xshape, class_num = get_datasets("cifar10", str(torch_dir / "cifar.python"), -1) | ||||
|     print( | ||||
|         "original CIFAR-10 : {:} training images and {:} test images : {:} input shape : {:} number of classes".format( | ||||
|             len(TRAIN_CIFAR10), len(VALID_CIFAR10), xshape, class_num | ||||
|         ) | ||||
|     ) | ||||
|     cifar10_splits = load_config(root_dir / "configs" / "nas-benchmark" / "cifar-split.txt", None, None) | ||||
|     assert cifar10_splits.train[:10] == [0, 5, 7, 11, 13, 15, 16, 17, 20, 24] and cifar10_splits.valid[:10] == [ | ||||
|         1, | ||||
|         2, | ||||
|         3, | ||||
|         4, | ||||
|         6, | ||||
|         8, | ||||
|         9, | ||||
|         10, | ||||
|         12, | ||||
|         14, | ||||
|     ] | ||||
|     temp_dataset = deepcopy(TRAIN_CIFAR10) | ||||
|     temp_dataset.transform = VALID_CIFAR10.transform | ||||
|     # data loader | ||||
|     trainval_cifar10_loader = torch.utils.data.DataLoader( | ||||
|         TRAIN_CIFAR10, batch_size=cifar_config.batch_size, shuffle=True, num_workers=workers, pin_memory=True | ||||
|     ) | ||||
|     train_cifar10_loader = torch.utils.data.DataLoader( | ||||
|         TRAIN_CIFAR10, | ||||
|         batch_size=cifar_config.batch_size, | ||||
|         sampler=torch.utils.data.sampler.SubsetRandomSampler(cifar10_splits.train), | ||||
|         num_workers=workers, | ||||
|         pin_memory=True, | ||||
|     ) | ||||
|     valid_cifar10_loader = torch.utils.data.DataLoader( | ||||
|         temp_dataset, | ||||
|         batch_size=cifar_config.batch_size, | ||||
|         sampler=torch.utils.data.sampler.SubsetRandomSampler(cifar10_splits.valid), | ||||
|         num_workers=workers, | ||||
|         pin_memory=True, | ||||
|     ) | ||||
|     test__cifar10_loader = torch.utils.data.DataLoader( | ||||
|         VALID_CIFAR10, batch_size=cifar_config.batch_size, shuffle=False, num_workers=workers, pin_memory=True | ||||
|     ) | ||||
|     print( | ||||
|         "CIFAR-10  : trval-loader has {:3d} batch with {:} per batch".format( | ||||
|             len(trainval_cifar10_loader), cifar_config.batch_size | ||||
|         ) | ||||
|     ) | ||||
|     print( | ||||
|         "CIFAR-10  : train-loader has {:3d} batch with {:} per batch".format( | ||||
|             len(train_cifar10_loader), cifar_config.batch_size | ||||
|         ) | ||||
|     ) | ||||
|     print( | ||||
|         "CIFAR-10  : valid-loader has {:3d} batch with {:} per batch".format( | ||||
|             len(valid_cifar10_loader), cifar_config.batch_size | ||||
|         ) | ||||
|     ) | ||||
|     print( | ||||
|         "CIFAR-10  : test--loader has {:3d} batch with {:} per batch".format( | ||||
|             len(test__cifar10_loader), cifar_config.batch_size | ||||
|         ) | ||||
|     ) | ||||
|     print("-" * 200) | ||||
|     # CIFAR-100 | ||||
|     TRAIN_CIFAR100, VALID_CIFAR100, xshape, class_num = get_datasets("cifar100", str(torch_dir / "cifar.python"), -1) | ||||
|     print( | ||||
|         "original CIFAR-100: {:} training images and {:} test images : {:} input shape : {:} number of classes".format( | ||||
|             len(TRAIN_CIFAR100), len(VALID_CIFAR100), xshape, class_num | ||||
|         ) | ||||
|     ) | ||||
|     cifar100_splits = load_config(root_dir / "configs" / "nas-benchmark" / "cifar100-test-split.txt", None, None) | ||||
|     assert cifar100_splits.xvalid[:10] == [1, 3, 4, 5, 8, 10, 13, 14, 15, 16] and cifar100_splits.xtest[:10] == [ | ||||
|         0, | ||||
|         2, | ||||
|         6, | ||||
|         7, | ||||
|         9, | ||||
|         11, | ||||
|         12, | ||||
|         17, | ||||
|         20, | ||||
|         24, | ||||
|     ] | ||||
|     train_cifar100_loader = torch.utils.data.DataLoader( | ||||
|         TRAIN_CIFAR100, batch_size=cifar_config.batch_size, shuffle=True, num_workers=workers, pin_memory=True | ||||
|     ) | ||||
|     valid_cifar100_loader = torch.utils.data.DataLoader( | ||||
|         VALID_CIFAR100, | ||||
|         batch_size=cifar_config.batch_size, | ||||
|         sampler=torch.utils.data.sampler.SubsetRandomSampler(cifar100_splits.xvalid), | ||||
|         num_workers=workers, | ||||
|         pin_memory=True, | ||||
|     ) | ||||
|     test__cifar100_loader = torch.utils.data.DataLoader( | ||||
|         VALID_CIFAR100, | ||||
|         batch_size=cifar_config.batch_size, | ||||
|         sampler=torch.utils.data.sampler.SubsetRandomSampler(cifar100_splits.xtest), | ||||
|         num_workers=workers, | ||||
|         pin_memory=True, | ||||
|     ) | ||||
|     print("CIFAR-100  : train-loader has {:3d} batch".format(len(train_cifar100_loader))) | ||||
|     print("CIFAR-100  : valid-loader has {:3d} batch".format(len(valid_cifar100_loader))) | ||||
|     print("CIFAR-100  : test--loader has {:3d} batch".format(len(test__cifar100_loader))) | ||||
|     print("-" * 200) | ||||
|  | ||||
|   imagenet16_config_path = 'configs/nas-benchmark/ImageNet-16.config' | ||||
|   imagenet16_config = load_config(imagenet16_config_path, None, None) | ||||
|   TRAIN_ImageNet16_120, VALID_ImageNet16_120, xshape, class_num = get_datasets('ImageNet16-120', str(torch_dir/'cifar.python'/'ImageNet16'), -1) | ||||
|   print ('original TRAIN_ImageNet16_120: {:} training images and {:} test images : {:} input shape : {:} number of classes'.format(len(TRAIN_ImageNet16_120), len(VALID_ImageNet16_120), xshape, class_num)) | ||||
|   imagenet_splits = load_config(root_dir / 'configs' / 'nas-benchmark' / 'imagenet-16-120-test-split.txt', None, None) | ||||
|   assert imagenet_splits.xvalid[:10] == [1, 2, 3, 6, 7, 8, 9, 12, 16, 18] and imagenet_splits.xtest[:10] == [0, 4, 5, 10, 11, 13, 14, 15, 17, 20] | ||||
|   train_imagenet_loader = torch.utils.data.DataLoader(TRAIN_ImageNet16_120, batch_size=imagenet16_config.batch_size, shuffle=True, num_workers=workers, pin_memory=True) | ||||
|   valid_imagenet_loader = torch.utils.data.DataLoader(VALID_ImageNet16_120, batch_size=imagenet16_config.batch_size, sampler=torch.utils.data.sampler.SubsetRandomSampler(imagenet_splits.xvalid), num_workers=workers, pin_memory=True) | ||||
|   test__imagenet_loader = torch.utils.data.DataLoader(VALID_ImageNet16_120, batch_size=imagenet16_config.batch_size, sampler=torch.utils.data.sampler.SubsetRandomSampler(imagenet_splits.xtest) , num_workers=workers, pin_memory=True) | ||||
|   print ('ImageNet-16-120  : train-loader has {:3d} batch with {:} per batch'.format(len(train_imagenet_loader), imagenet16_config.batch_size)) | ||||
|   print ('ImageNet-16-120  : valid-loader has {:3d} batch with {:} per batch'.format(len(valid_imagenet_loader), imagenet16_config.batch_size)) | ||||
|   print ('ImageNet-16-120  : test--loader has {:3d} batch with {:} per batch'.format(len(test__imagenet_loader), imagenet16_config.batch_size)) | ||||
|     imagenet16_config_path = "configs/nas-benchmark/ImageNet-16.config" | ||||
|     imagenet16_config = load_config(imagenet16_config_path, None, None) | ||||
|     TRAIN_ImageNet16_120, VALID_ImageNet16_120, xshape, class_num = get_datasets( | ||||
|         "ImageNet16-120", str(torch_dir / "cifar.python" / "ImageNet16"), -1 | ||||
|     ) | ||||
|     print( | ||||
|         "original TRAIN_ImageNet16_120: {:} training images and {:} test images : {:} input shape : {:} number of classes".format( | ||||
|             len(TRAIN_ImageNet16_120), len(VALID_ImageNet16_120), xshape, class_num | ||||
|         ) | ||||
|     ) | ||||
|     imagenet_splits = load_config(root_dir / "configs" / "nas-benchmark" / "imagenet-16-120-test-split.txt", None, None) | ||||
|     assert imagenet_splits.xvalid[:10] == [1, 2, 3, 6, 7, 8, 9, 12, 16, 18] and imagenet_splits.xtest[:10] == [ | ||||
|         0, | ||||
|         4, | ||||
|         5, | ||||
|         10, | ||||
|         11, | ||||
|         13, | ||||
|         14, | ||||
|         15, | ||||
|         17, | ||||
|         20, | ||||
|     ] | ||||
|     train_imagenet_loader = torch.utils.data.DataLoader( | ||||
|         TRAIN_ImageNet16_120, | ||||
|         batch_size=imagenet16_config.batch_size, | ||||
|         shuffle=True, | ||||
|         num_workers=workers, | ||||
|         pin_memory=True, | ||||
|     ) | ||||
|     valid_imagenet_loader = torch.utils.data.DataLoader( | ||||
|         VALID_ImageNet16_120, | ||||
|         batch_size=imagenet16_config.batch_size, | ||||
|         sampler=torch.utils.data.sampler.SubsetRandomSampler(imagenet_splits.xvalid), | ||||
|         num_workers=workers, | ||||
|         pin_memory=True, | ||||
|     ) | ||||
|     test__imagenet_loader = torch.utils.data.DataLoader( | ||||
|         VALID_ImageNet16_120, | ||||
|         batch_size=imagenet16_config.batch_size, | ||||
|         sampler=torch.utils.data.sampler.SubsetRandomSampler(imagenet_splits.xtest), | ||||
|         num_workers=workers, | ||||
|         pin_memory=True, | ||||
|     ) | ||||
|     print( | ||||
|         "ImageNet-16-120  : train-loader has {:3d} batch with {:} per batch".format( | ||||
|             len(train_imagenet_loader), imagenet16_config.batch_size | ||||
|         ) | ||||
|     ) | ||||
|     print( | ||||
|         "ImageNet-16-120  : valid-loader has {:3d} batch with {:} per batch".format( | ||||
|             len(valid_imagenet_loader), imagenet16_config.batch_size | ||||
|         ) | ||||
|     ) | ||||
|     print( | ||||
|         "ImageNet-16-120  : test--loader has {:3d} batch with {:} per batch".format( | ||||
|             len(test__imagenet_loader), imagenet16_config.batch_size | ||||
|         ) | ||||
|     ) | ||||
|  | ||||
|   # 'cifar10', 'cifar100', 'ImageNet16-120' | ||||
|   loaders = {'cifar10@trainval': trainval_cifar10_loader, | ||||
|              'cifar10@train'   : train_cifar10_loader, | ||||
|              'cifar10@valid'   : valid_cifar10_loader, | ||||
|              'cifar10@test'    : test__cifar10_loader, | ||||
|              'cifar100@train'  : train_cifar100_loader, | ||||
|              'cifar100@valid'  : valid_cifar100_loader, | ||||
|              'cifar100@test'   : test__cifar100_loader, | ||||
|              'ImageNet16-120@train': train_imagenet_loader, | ||||
|              'ImageNet16-120@valid': valid_imagenet_loader, | ||||
|              'ImageNet16-120@test' : test__imagenet_loader} | ||||
|   return loaders | ||||
|     # 'cifar10', 'cifar100', 'ImageNet16-120' | ||||
|     loaders = { | ||||
|         "cifar10@trainval": trainval_cifar10_loader, | ||||
|         "cifar10@train": train_cifar10_loader, | ||||
|         "cifar10@valid": valid_cifar10_loader, | ||||
|         "cifar10@test": test__cifar10_loader, | ||||
|         "cifar100@train": train_cifar100_loader, | ||||
|         "cifar100@valid": valid_cifar100_loader, | ||||
|         "cifar100@test": test__cifar100_loader, | ||||
|         "ImageNet16-120@train": train_imagenet_loader, | ||||
|         "ImageNet16-120@valid": valid_imagenet_loader, | ||||
|         "ImageNet16-120@test": test__imagenet_loader, | ||||
|     } | ||||
|     return loaders | ||||
|  | ||||
|  | ||||
| def simplify(save_dir, meta_file, basestr, target_dir): | ||||
|   meta_infos     = torch.load(meta_file, map_location='cpu') | ||||
|   meta_archs     = meta_infos['archs'] # a list of architecture strings | ||||
|   meta_num_archs = meta_infos['total'] | ||||
|   meta_max_node  = meta_infos['max_node'] | ||||
|   assert meta_num_archs == len(meta_archs), 'invalid number of archs : {:} vs {:}'.format(meta_num_archs, len(meta_archs)) | ||||
|     meta_infos = torch.load(meta_file, map_location="cpu") | ||||
|     meta_archs = meta_infos["archs"]  # a list of architecture strings | ||||
|     meta_num_archs = meta_infos["total"] | ||||
|     meta_max_node = meta_infos["max_node"] | ||||
|     assert meta_num_archs == len(meta_archs), "invalid number of archs : {:} vs {:}".format( | ||||
|         meta_num_archs, len(meta_archs) | ||||
|     ) | ||||
|  | ||||
|   sub_model_dirs = sorted(list(save_dir.glob('*-*-{:}'.format(basestr)))) | ||||
|   print ('{:} find {:} directories used to save checkpoints'.format(time_string(), len(sub_model_dirs))) | ||||
|    | ||||
|   subdir2archs, num_evaluated_arch = collections.OrderedDict(), 0 | ||||
|   num_seeds = defaultdict(lambda: 0) | ||||
|   for index, sub_dir in enumerate(sub_model_dirs): | ||||
|     xcheckpoints = list(sub_dir.glob('arch-*-seed-*.pth')) | ||||
|     arch_indexes = set() | ||||
|     for checkpoint in xcheckpoints: | ||||
|       temp_names = checkpoint.name.split('-') | ||||
|       assert len(temp_names) == 4 and temp_names[0] == 'arch' and temp_names[2] == 'seed', 'invalid checkpoint name : {:}'.format(checkpoint.name) | ||||
|       arch_indexes.add( temp_names[1] ) | ||||
|     subdir2archs[sub_dir] = sorted(list(arch_indexes)) | ||||
|     num_evaluated_arch   += len(arch_indexes) | ||||
|     # count number of seeds for each architecture | ||||
|     for arch_index in arch_indexes: | ||||
|       num_seeds[ len(list(sub_dir.glob('arch-{:}-seed-*.pth'.format(arch_index)))) ] += 1 | ||||
|   print('{:} There are {:5d} architectures that have been evaluated ({:} in total).'.format(time_string(), num_evaluated_arch, meta_num_archs)) | ||||
|   for key in sorted( list( num_seeds.keys() ) ): print ('{:} There are {:5d} architectures that are evaluated {:} times.'.format(time_string(), num_seeds[key], key)) | ||||
|     sub_model_dirs = sorted(list(save_dir.glob("*-*-{:}".format(basestr)))) | ||||
|     print("{:} find {:} directories used to save checkpoints".format(time_string(), len(sub_model_dirs))) | ||||
|  | ||||
|   dataloader_dict = GET_DataLoaders( 6 ) | ||||
|     subdir2archs, num_evaluated_arch = collections.OrderedDict(), 0 | ||||
|     num_seeds = defaultdict(lambda: 0) | ||||
|     for index, sub_dir in enumerate(sub_model_dirs): | ||||
|         xcheckpoints = list(sub_dir.glob("arch-*-seed-*.pth")) | ||||
|         arch_indexes = set() | ||||
|         for checkpoint in xcheckpoints: | ||||
|             temp_names = checkpoint.name.split("-") | ||||
|             assert ( | ||||
|                 len(temp_names) == 4 and temp_names[0] == "arch" and temp_names[2] == "seed" | ||||
|             ), "invalid checkpoint name : {:}".format(checkpoint.name) | ||||
|             arch_indexes.add(temp_names[1]) | ||||
|         subdir2archs[sub_dir] = sorted(list(arch_indexes)) | ||||
|         num_evaluated_arch += len(arch_indexes) | ||||
|         # count number of seeds for each architecture | ||||
|         for arch_index in arch_indexes: | ||||
|             num_seeds[len(list(sub_dir.glob("arch-{:}-seed-*.pth".format(arch_index))))] += 1 | ||||
|     print( | ||||
|         "{:} There are {:5d} architectures that have been evaluated ({:} in total).".format( | ||||
|             time_string(), num_evaluated_arch, meta_num_archs | ||||
|         ) | ||||
|     ) | ||||
|     for key in sorted(list(num_seeds.keys())): | ||||
|         print( | ||||
|             "{:} There are {:5d} architectures that are evaluated {:} times.".format(time_string(), num_seeds[key], key) | ||||
|         ) | ||||
|  | ||||
|   to_save_simply = save_dir / 'simplifies' | ||||
|   to_save_allarc = save_dir / 'simplifies' / 'architectures' | ||||
|   if not to_save_simply.exists(): to_save_simply.mkdir(parents=True, exist_ok=True) | ||||
|   if not to_save_allarc.exists(): to_save_allarc.mkdir(parents=True, exist_ok=True) | ||||
|     dataloader_dict = GET_DataLoaders(6) | ||||
|  | ||||
|   assert (save_dir / target_dir) in subdir2archs, 'can not find {:}'.format(target_dir) | ||||
|   arch2infos, datasets = {}, ('cifar10-valid', 'cifar10', 'cifar100', 'ImageNet16-120') | ||||
|   evaluated_indexes    = set() | ||||
|   target_directory     = save_dir / target_dir | ||||
|   target_less_dir      = save_dir / '{:}-LESS'.format(target_dir) | ||||
|   arch_indexes         = subdir2archs[ target_directory ] | ||||
|   num_seeds            = defaultdict(lambda: 0) | ||||
|   end_time             = time.time() | ||||
|   arch_time            = AverageMeter() | ||||
|   for idx, arch_index in enumerate(arch_indexes): | ||||
|     checkpoints = list(target_directory.glob('arch-{:}-seed-*.pth'.format(arch_index))) | ||||
|     ckps_less   = list(target_less_dir.glob('arch-{:}-seed-*.pth'.format(arch_index))) | ||||
|     # create the arch info for each architecture | ||||
|     try: | ||||
|       arch_info_full = account_one_arch(arch_index, meta_archs[int(arch_index)], checkpoints, datasets, dataloader_dict) | ||||
|       arch_info_less = account_one_arch(arch_index, meta_archs[int(arch_index)], ckps_less, ['cifar10-valid'], dataloader_dict) | ||||
|       num_seeds[ len(checkpoints) ] += 1 | ||||
|     except: | ||||
|       print('Loading {:} failed, : {:}'.format(arch_index, checkpoints)) | ||||
|       continue | ||||
|     assert int(arch_index) not in evaluated_indexes, 'conflict arch-index : {:}'.format(arch_index) | ||||
|     assert 0 <= int(arch_index) < len(meta_archs), 'invalid arch-index {:} (not found in meta_archs)'.format(arch_index) | ||||
|     arch_info = {'full': arch_info_full, 'less': arch_info_less} | ||||
|     evaluated_indexes.add( int(arch_index) ) | ||||
|     arch2infos[int(arch_index)] = arch_info | ||||
|     torch.save({'full': arch_info_full.state_dict(), | ||||
|                 'less': arch_info_less.state_dict()}, to_save_allarc / '{:}-FULL.pth'.format(arch_index)) | ||||
|     arch_info['full'].clear_params() | ||||
|     arch_info['less'].clear_params() | ||||
|     torch.save({'full': arch_info_full.state_dict(), | ||||
|                 'less': arch_info_less.state_dict()}, to_save_allarc / '{:}-SIMPLE.pth'.format(arch_index)) | ||||
|     # measure elapsed time | ||||
|     arch_time.update(time.time() - end_time) | ||||
|     end_time  = time.time() | ||||
|     need_time = '{:}'.format( convert_secs2time(arch_time.avg * (len(arch_indexes)-idx-1), True) ) | ||||
|     print('{:} {:} [{:03d}/{:03d}] : {:} still need {:}'.format(time_string(), target_dir, idx, len(arch_indexes), arch_index, need_time)) | ||||
|   # measure time | ||||
|   xstrs = ['{:}:{:03d}'.format(key, num_seeds[key]) for key in sorted( list( num_seeds.keys() ) ) ] | ||||
|   print('{:} {:} done : {:}'.format(time_string(), target_dir, xstrs)) | ||||
|   final_infos = {'meta_archs' : meta_archs, | ||||
|                  'total_archs': meta_num_archs, | ||||
|                  'basestr'    : basestr, | ||||
|                  'arch2infos' : arch2infos, | ||||
|                  'evaluated_indexes': evaluated_indexes} | ||||
|   save_file_name = to_save_simply / '{:}.pth'.format(target_dir) | ||||
|   torch.save(final_infos, save_file_name) | ||||
|   print ('Save {:} / {:} architecture results into {:}.'.format(len(evaluated_indexes), meta_num_archs, save_file_name)) | ||||
|     to_save_simply = save_dir / "simplifies" | ||||
|     to_save_allarc = save_dir / "simplifies" / "architectures" | ||||
|     if not to_save_simply.exists(): | ||||
|         to_save_simply.mkdir(parents=True, exist_ok=True) | ||||
|     if not to_save_allarc.exists(): | ||||
|         to_save_allarc.mkdir(parents=True, exist_ok=True) | ||||
|  | ||||
|     assert (save_dir / target_dir) in subdir2archs, "can not find {:}".format(target_dir) | ||||
|     arch2infos, datasets = {}, ("cifar10-valid", "cifar10", "cifar100", "ImageNet16-120") | ||||
|     evaluated_indexes = set() | ||||
|     target_directory = save_dir / target_dir | ||||
|     target_less_dir = save_dir / "{:}-LESS".format(target_dir) | ||||
|     arch_indexes = subdir2archs[target_directory] | ||||
|     num_seeds = defaultdict(lambda: 0) | ||||
|     end_time = time.time() | ||||
|     arch_time = AverageMeter() | ||||
|     for idx, arch_index in enumerate(arch_indexes): | ||||
|         checkpoints = list(target_directory.glob("arch-{:}-seed-*.pth".format(arch_index))) | ||||
|         ckps_less = list(target_less_dir.glob("arch-{:}-seed-*.pth".format(arch_index))) | ||||
|         # create the arch info for each architecture | ||||
|         try: | ||||
|             arch_info_full = account_one_arch( | ||||
|                 arch_index, meta_archs[int(arch_index)], checkpoints, datasets, dataloader_dict | ||||
|             ) | ||||
|             arch_info_less = account_one_arch( | ||||
|                 arch_index, meta_archs[int(arch_index)], ckps_less, ["cifar10-valid"], dataloader_dict | ||||
|             ) | ||||
|             num_seeds[len(checkpoints)] += 1 | ||||
|         except: | ||||
|             print("Loading {:} failed, : {:}".format(arch_index, checkpoints)) | ||||
|             continue | ||||
|         assert int(arch_index) not in evaluated_indexes, "conflict arch-index : {:}".format(arch_index) | ||||
|         assert 0 <= int(arch_index) < len(meta_archs), "invalid arch-index {:} (not found in meta_archs)".format( | ||||
|             arch_index | ||||
|         ) | ||||
|         arch_info = {"full": arch_info_full, "less": arch_info_less} | ||||
|         evaluated_indexes.add(int(arch_index)) | ||||
|         arch2infos[int(arch_index)] = arch_info | ||||
|         torch.save( | ||||
|             {"full": arch_info_full.state_dict(), "less": arch_info_less.state_dict()}, | ||||
|             to_save_allarc / "{:}-FULL.pth".format(arch_index), | ||||
|         ) | ||||
|         arch_info["full"].clear_params() | ||||
|         arch_info["less"].clear_params() | ||||
|         torch.save( | ||||
|             {"full": arch_info_full.state_dict(), "less": arch_info_less.state_dict()}, | ||||
|             to_save_allarc / "{:}-SIMPLE.pth".format(arch_index), | ||||
|         ) | ||||
|         # measure elapsed time | ||||
|         arch_time.update(time.time() - end_time) | ||||
|         end_time = time.time() | ||||
|         need_time = "{:}".format(convert_secs2time(arch_time.avg * (len(arch_indexes) - idx - 1), True)) | ||||
|         print( | ||||
|             "{:} {:} [{:03d}/{:03d}] : {:} still need {:}".format( | ||||
|                 time_string(), target_dir, idx, len(arch_indexes), arch_index, need_time | ||||
|             ) | ||||
|         ) | ||||
|     # measure time | ||||
|     xstrs = ["{:}:{:03d}".format(key, num_seeds[key]) for key in sorted(list(num_seeds.keys()))] | ||||
|     print("{:} {:} done : {:}".format(time_string(), target_dir, xstrs)) | ||||
|     final_infos = { | ||||
|         "meta_archs": meta_archs, | ||||
|         "total_archs": meta_num_archs, | ||||
|         "basestr": basestr, | ||||
|         "arch2infos": arch2infos, | ||||
|         "evaluated_indexes": evaluated_indexes, | ||||
|     } | ||||
|     save_file_name = to_save_simply / "{:}.pth".format(target_dir) | ||||
|     torch.save(final_infos, save_file_name) | ||||
|     print( | ||||
|         "Save {:} / {:} architecture results into {:}.".format(len(evaluated_indexes), meta_num_archs, save_file_name) | ||||
|     ) | ||||
|  | ||||
|  | ||||
| def merge_all(save_dir, meta_file, basestr): | ||||
|   meta_infos     = torch.load(meta_file, map_location='cpu') | ||||
|   meta_archs     = meta_infos['archs'] | ||||
|   meta_num_archs = meta_infos['total'] | ||||
|   meta_max_node  = meta_infos['max_node'] | ||||
|   assert meta_num_archs == len(meta_archs), 'invalid number of archs : {:} vs {:}'.format(meta_num_archs, len(meta_archs)) | ||||
|     meta_infos = torch.load(meta_file, map_location="cpu") | ||||
|     meta_archs = meta_infos["archs"] | ||||
|     meta_num_archs = meta_infos["total"] | ||||
|     meta_max_node = meta_infos["max_node"] | ||||
|     assert meta_num_archs == len(meta_archs), "invalid number of archs : {:} vs {:}".format( | ||||
|         meta_num_archs, len(meta_archs) | ||||
|     ) | ||||
|  | ||||
|   sub_model_dirs = sorted(list(save_dir.glob('*-*-{:}'.format(basestr)))) | ||||
|   print ('{:} find {:} directories used to save checkpoints'.format(time_string(), len(sub_model_dirs))) | ||||
|   for index, sub_dir in enumerate(sub_model_dirs): | ||||
|     arch_info_files = sorted( list(sub_dir.glob('arch-*-seed-*.pth') ) ) | ||||
|     print ('The {:02d}/{:02d}-th directory : {:} : {:} runs.'.format(index, len(sub_model_dirs), sub_dir, len(arch_info_files))) | ||||
|    | ||||
|   arch2infos, evaluated_indexes = dict(), set() | ||||
|   for IDX, sub_dir in enumerate(sub_model_dirs): | ||||
|     ckp_path = sub_dir.parent / 'simplifies' / '{:}.pth'.format(sub_dir.name) | ||||
|     if ckp_path.exists(): | ||||
|       sub_ckps = torch.load(ckp_path, map_location='cpu') | ||||
|       assert sub_ckps['total_archs'] == meta_num_archs and sub_ckps['basestr'] == basestr | ||||
|       xarch2infos = sub_ckps['arch2infos'] | ||||
|       xevalindexs = sub_ckps['evaluated_indexes'] | ||||
|       for eval_index in xevalindexs: | ||||
|         assert eval_index not in evaluated_indexes and eval_index not in arch2infos | ||||
|         #arch2infos[eval_index] = xarch2infos[eval_index].state_dict() | ||||
|         arch2infos[eval_index] = {'full': xarch2infos[eval_index]['full'].state_dict(), | ||||
|                                   'less': xarch2infos[eval_index]['less'].state_dict()} | ||||
|         evaluated_indexes.add( eval_index ) | ||||
|       print ('{:} [{:03d}/{:03d}] merge data from {:} with {:} models.'.format(time_string(), IDX, len(sub_model_dirs), ckp_path, len(xevalindexs))) | ||||
|     sub_model_dirs = sorted(list(save_dir.glob("*-*-{:}".format(basestr)))) | ||||
|     print("{:} find {:} directories used to save checkpoints".format(time_string(), len(sub_model_dirs))) | ||||
|     for index, sub_dir in enumerate(sub_model_dirs): | ||||
|         arch_info_files = sorted(list(sub_dir.glob("arch-*-seed-*.pth"))) | ||||
|         print( | ||||
|             "The {:02d}/{:02d}-th directory : {:} : {:} runs.".format( | ||||
|                 index, len(sub_model_dirs), sub_dir, len(arch_info_files) | ||||
|             ) | ||||
|         ) | ||||
|  | ||||
|     arch2infos, evaluated_indexes = dict(), set() | ||||
|     for IDX, sub_dir in enumerate(sub_model_dirs): | ||||
|         ckp_path = sub_dir.parent / "simplifies" / "{:}.pth".format(sub_dir.name) | ||||
|         if ckp_path.exists(): | ||||
|             sub_ckps = torch.load(ckp_path, map_location="cpu") | ||||
|             assert sub_ckps["total_archs"] == meta_num_archs and sub_ckps["basestr"] == basestr | ||||
|             xarch2infos = sub_ckps["arch2infos"] | ||||
|             xevalindexs = sub_ckps["evaluated_indexes"] | ||||
|             for eval_index in xevalindexs: | ||||
|                 assert eval_index not in evaluated_indexes and eval_index not in arch2infos | ||||
|                 # arch2infos[eval_index] = xarch2infos[eval_index].state_dict() | ||||
|                 arch2infos[eval_index] = { | ||||
|                     "full": xarch2infos[eval_index]["full"].state_dict(), | ||||
|                     "less": xarch2infos[eval_index]["less"].state_dict(), | ||||
|                 } | ||||
|                 evaluated_indexes.add(eval_index) | ||||
|             print( | ||||
|                 "{:} [{:03d}/{:03d}] merge data from {:} with {:} models.".format( | ||||
|                     time_string(), IDX, len(sub_model_dirs), ckp_path, len(xevalindexs) | ||||
|                 ) | ||||
|             ) | ||||
|         else: | ||||
|             raise ValueError("Can not find {:}".format(ckp_path)) | ||||
|             # print ('{:} [{:03d}/{:03d}] can not find {:}, skip.'.format(time_string(), IDX, len(subdir2archs), ckp_path)) | ||||
|  | ||||
|     evaluated_indexes = sorted(list(evaluated_indexes)) | ||||
|     print("Finally, there are {:} architectures that have been trained and evaluated.".format(len(evaluated_indexes))) | ||||
|  | ||||
|     to_save_simply = save_dir / "simplifies" | ||||
|     if not to_save_simply.exists(): | ||||
|         to_save_simply.mkdir(parents=True, exist_ok=True) | ||||
|     final_infos = { | ||||
|         "meta_archs": meta_archs, | ||||
|         "total_archs": meta_num_archs, | ||||
|         "arch2infos": arch2infos, | ||||
|         "evaluated_indexes": evaluated_indexes, | ||||
|     } | ||||
|     save_file_name = to_save_simply / "{:}-final-infos.pth".format(basestr) | ||||
|     torch.save(final_infos, save_file_name) | ||||
|     print( | ||||
|         "Save {:} / {:} architecture results into {:}.".format(len(evaluated_indexes), meta_num_archs, save_file_name) | ||||
|     ) | ||||
|  | ||||
|  | ||||
| if __name__ == "__main__": | ||||
|  | ||||
|     parser = argparse.ArgumentParser( | ||||
|         description="NAS-BENCH-201", formatter_class=argparse.ArgumentDefaultsHelpFormatter | ||||
|     ) | ||||
|     parser.add_argument("--mode", type=str, choices=["cal", "merge"], help="The running mode for this script.") | ||||
|     parser.add_argument( | ||||
|         "--base_save_dir", | ||||
|         type=str, | ||||
|         default="./output/NAS-BENCH-201-4", | ||||
|         help="The base-name of folder to save checkpoints and log.", | ||||
|     ) | ||||
|     parser.add_argument("--target_dir", type=str, help="The target directory.") | ||||
|     parser.add_argument("--max_node", type=int, default=4, help="The maximum node in a cell.") | ||||
|     parser.add_argument("--channel", type=int, default=16, help="The number of channels.") | ||||
|     parser.add_argument("--num_cells", type=int, default=5, help="The number of cells in one stage.") | ||||
|     args = parser.parse_args() | ||||
|  | ||||
|     save_dir = Path(args.base_save_dir) | ||||
|     meta_path = save_dir / "meta-node-{:}.pth".format(args.max_node) | ||||
|     assert save_dir.exists(), "invalid save dir path : {:}".format(save_dir) | ||||
|     assert meta_path.exists(), "invalid saved meta path : {:}".format(meta_path) | ||||
|     print("start the statistics of our nas-benchmark from {:} using {:}.".format(save_dir, args.target_dir)) | ||||
|     basestr = "C{:}-N{:}".format(args.channel, args.num_cells) | ||||
|  | ||||
|     if args.mode == "cal": | ||||
|         simplify(save_dir, meta_path, basestr, args.target_dir) | ||||
|     elif args.mode == "merge": | ||||
|         merge_all(save_dir, meta_path, basestr) | ||||
|     else: | ||||
|       raise ValueError('Can not find {:}'.format(ckp_path)) | ||||
|       #print ('{:} [{:03d}/{:03d}] can not find {:}, skip.'.format(time_string(), IDX, len(subdir2archs), ckp_path)) | ||||
|  | ||||
|   evaluated_indexes = sorted( list( evaluated_indexes ) ) | ||||
|   print ('Finally, there are {:} architectures that have been trained and evaluated.'.format(len(evaluated_indexes))) | ||||
|  | ||||
|   to_save_simply = save_dir / 'simplifies' | ||||
|   if not to_save_simply.exists(): to_save_simply.mkdir(parents=True, exist_ok=True) | ||||
|   final_infos = {'meta_archs' : meta_archs, | ||||
|                  'total_archs': meta_num_archs, | ||||
|                  'arch2infos' : arch2infos, | ||||
|                  'evaluated_indexes': evaluated_indexes} | ||||
|   save_file_name = to_save_simply / '{:}-final-infos.pth'.format(basestr) | ||||
|   torch.save(final_infos, save_file_name) | ||||
|   print ('Save {:} / {:} architecture results into {:}.'.format(len(evaluated_indexes), meta_num_archs, save_file_name)) | ||||
|  | ||||
|  | ||||
| if __name__ == '__main__': | ||||
|  | ||||
|   parser = argparse.ArgumentParser(description='NAS-BENCH-201', formatter_class=argparse.ArgumentDefaultsHelpFormatter) | ||||
|   parser.add_argument('--mode'         ,  type=str, choices=['cal', 'merge'],            help='The running mode for this script.') | ||||
|   parser.add_argument('--base_save_dir',  type=str, default='./output/NAS-BENCH-201-4',  help='The base-name of folder to save checkpoints and log.') | ||||
|   parser.add_argument('--target_dir'   ,  type=str,                                      help='The target directory.') | ||||
|   parser.add_argument('--max_node'     ,  type=int, default=4,                           help='The maximum node in a cell.') | ||||
|   parser.add_argument('--channel'      ,  type=int, default=16,                          help='The number of channels.') | ||||
|   parser.add_argument('--num_cells'    ,  type=int, default=5,                           help='The number of cells in one stage.') | ||||
|   args = parser.parse_args() | ||||
|    | ||||
|   save_dir  = Path(args.base_save_dir) | ||||
|   meta_path = save_dir / 'meta-node-{:}.pth'.format(args.max_node) | ||||
|   assert save_dir.exists(),  'invalid save dir path : {:}'.format(save_dir) | ||||
|   assert meta_path.exists(), 'invalid saved meta path : {:}'.format(meta_path) | ||||
|   print ('start the statistics of our nas-benchmark from {:} using {:}.'.format(save_dir, args.target_dir)) | ||||
|   basestr   = 'C{:}-N{:}'.format(args.channel, args.num_cells) | ||||
|    | ||||
|   if args.mode == 'cal': | ||||
|     simplify(save_dir, meta_path, basestr, args.target_dir) | ||||
|   elif args.mode == 'merge': | ||||
|     merge_all(save_dir, meta_path, basestr) | ||||
|   else: | ||||
|     raise ValueError('invalid mode : {:}'.format(args.mode)) | ||||
|         raise ValueError("invalid mode : {:}".format(args.mode)) | ||||
|   | ||||
| @@ -9,123 +9,151 @@ from copy import deepcopy | ||||
| from tqdm import tqdm | ||||
| import torch | ||||
| from pathlib import Path | ||||
| lib_dir = (Path(__file__).parent / '..' / '..' / 'lib').resolve() | ||||
| if str(lib_dir) not in sys.path: sys.path.insert(0, str(lib_dir)) | ||||
| from log_utils    import time_string | ||||
| from models       import CellStructure | ||||
| from nas_201_api  import NASBench201API as API | ||||
|  | ||||
| lib_dir = (Path(__file__).parent / ".." / ".." / "lib").resolve() | ||||
| if str(lib_dir) not in sys.path: | ||||
|     sys.path.insert(0, str(lib_dir)) | ||||
| from log_utils import time_string | ||||
| from models import CellStructure | ||||
| from nas_201_api import NASBench201API as API | ||||
|  | ||||
|  | ||||
| def check_unique_arch(meta_file): | ||||
|   api = API(str(meta_file)) | ||||
|   arch_strs = deepcopy(api.meta_archs) | ||||
|   xarchs = [CellStructure.str2structure(x) for x in arch_strs] | ||||
|   def get_unique_matrix(archs, consider_zero): | ||||
|     UniquStrs = [arch.to_unique_str(consider_zero) for arch in archs] | ||||
|     print ('{:} create unique-string ({:}/{:}) done'.format(time_string(), len(set(UniquStrs)), len(UniquStrs))) | ||||
|     Unique2Index = dict() | ||||
|     for index, xstr in enumerate(UniquStrs): | ||||
|       if xstr not in Unique2Index: Unique2Index[xstr] = list() | ||||
|       Unique2Index[xstr].append( index ) | ||||
|     sm_matrix = torch.eye(len(archs)).bool() | ||||
|     for _, xlist in Unique2Index.items(): | ||||
|       for i in xlist: | ||||
|         for j in xlist: | ||||
|           sm_matrix[i,j] = True | ||||
|     unique_ids, unique_num = [-1 for _ in archs], 0 | ||||
|     for i in range(len(unique_ids)): | ||||
|       if unique_ids[i] > -1: continue | ||||
|       neighbours = sm_matrix[i].nonzero().view(-1).tolist() | ||||
|       for nghb in neighbours: | ||||
|         assert unique_ids[nghb] == -1, 'impossible' | ||||
|         unique_ids[nghb] = unique_num | ||||
|       unique_num += 1 | ||||
|     return sm_matrix, unique_ids, unique_num | ||||
|     api = API(str(meta_file)) | ||||
|     arch_strs = deepcopy(api.meta_archs) | ||||
|     xarchs = [CellStructure.str2structure(x) for x in arch_strs] | ||||
|  | ||||
|   print ('There are {:} valid-archs'.format( sum(arch.check_valid() for arch in xarchs) )) | ||||
|   sm_matrix, uniqueIDs, unique_num = get_unique_matrix(xarchs, None) | ||||
|   print ('{:} There are {:} unique architectures (considering nothing).'.format(time_string(), unique_num)) | ||||
|   sm_matrix, uniqueIDs, unique_num = get_unique_matrix(xarchs, False) | ||||
|   print ('{:} There are {:} unique architectures (not considering zero).'.format(time_string(), unique_num)) | ||||
|   sm_matrix, uniqueIDs, unique_num = get_unique_matrix(xarchs,  True) | ||||
|   print ('{:} There are {:} unique architectures (considering zero).'.format(time_string(), unique_num)) | ||||
|     def get_unique_matrix(archs, consider_zero): | ||||
|         UniquStrs = [arch.to_unique_str(consider_zero) for arch in archs] | ||||
|         print("{:} create unique-string ({:}/{:}) done".format(time_string(), len(set(UniquStrs)), len(UniquStrs))) | ||||
|         Unique2Index = dict() | ||||
|         for index, xstr in enumerate(UniquStrs): | ||||
|             if xstr not in Unique2Index: | ||||
|                 Unique2Index[xstr] = list() | ||||
|             Unique2Index[xstr].append(index) | ||||
|         sm_matrix = torch.eye(len(archs)).bool() | ||||
|         for _, xlist in Unique2Index.items(): | ||||
|             for i in xlist: | ||||
|                 for j in xlist: | ||||
|                     sm_matrix[i, j] = True | ||||
|         unique_ids, unique_num = [-1 for _ in archs], 0 | ||||
|         for i in range(len(unique_ids)): | ||||
|             if unique_ids[i] > -1: | ||||
|                 continue | ||||
|             neighbours = sm_matrix[i].nonzero().view(-1).tolist() | ||||
|             for nghb in neighbours: | ||||
|                 assert unique_ids[nghb] == -1, "impossible" | ||||
|                 unique_ids[nghb] = unique_num | ||||
|             unique_num += 1 | ||||
|         return sm_matrix, unique_ids, unique_num | ||||
|  | ||||
|     print("There are {:} valid-archs".format(sum(arch.check_valid() for arch in xarchs))) | ||||
|     sm_matrix, uniqueIDs, unique_num = get_unique_matrix(xarchs, None) | ||||
|     print("{:} There are {:} unique architectures (considering nothing).".format(time_string(), unique_num)) | ||||
|     sm_matrix, uniqueIDs, unique_num = get_unique_matrix(xarchs, False) | ||||
|     print("{:} There are {:} unique architectures (not considering zero).".format(time_string(), unique_num)) | ||||
|     sm_matrix, uniqueIDs, unique_num = get_unique_matrix(xarchs, True) | ||||
|     print("{:} There are {:} unique architectures (considering zero).".format(time_string(), unique_num)) | ||||
|  | ||||
|  | ||||
| def check_cor_for_bandit(meta_file, test_epoch, use_less_or_not, is_rand=True, need_print=False): | ||||
|   if isinstance(meta_file, API): | ||||
|     api = meta_file | ||||
|   else: | ||||
|     api = API(str(meta_file)) | ||||
|   cifar10_currs     = [] | ||||
|   cifar10_valid     = [] | ||||
|   cifar10_test      = [] | ||||
|   cifar100_valid    = [] | ||||
|   cifar100_test     = [] | ||||
|   imagenet_test     = [] | ||||
|   imagenet_valid    = [] | ||||
|   for idx, arch in enumerate(api): | ||||
|     results = api.get_more_info(idx, 'cifar10-valid' , test_epoch-1, use_less_or_not, is_rand) | ||||
|     cifar10_currs.append( results['valid-accuracy'] ) | ||||
|     # --->>>>> | ||||
|     results = api.get_more_info(idx, 'cifar10-valid' , None, False, is_rand) | ||||
|     cifar10_valid.append( results['valid-accuracy'] ) | ||||
|     results = api.get_more_info(idx, 'cifar10'       , None, False, is_rand) | ||||
|     cifar10_test.append( results['test-accuracy'] ) | ||||
|     results = api.get_more_info(idx, 'cifar100'      , None, False, is_rand) | ||||
|     cifar100_test.append( results['test-accuracy'] ) | ||||
|     cifar100_valid.append( results['valid-accuracy'] ) | ||||
|     results = api.get_more_info(idx, 'ImageNet16-120', None, False, is_rand) | ||||
|     imagenet_test.append( results['test-accuracy'] ) | ||||
|     imagenet_valid.append( results['valid-accuracy'] ) | ||||
|   def get_cor(A, B): | ||||
|     return float(np.corrcoef(A, B)[0,1]) | ||||
|   cors = [] | ||||
|   for basestr, xlist in zip(['C-010-V', 'C-010-T', 'C-100-V', 'C-100-T', 'I16-V', 'I16-T'], [cifar10_valid, cifar10_test, cifar100_valid, cifar100_test, imagenet_valid, imagenet_test]): | ||||
|     correlation = get_cor(cifar10_currs, xlist) | ||||
|     if need_print: print ('With {:3d}/{:}-epochs-training, the correlation between cifar10-valid and {:} is : {:}'.format(test_epoch, '012' if use_less_or_not else '200', basestr, correlation)) | ||||
|     cors.append( correlation ) | ||||
|     #print ('With {:3d}/200-epochs-training, the correlation between cifar10-valid and {:} is : {:}'.format(test_epoch, basestr, get_cor(cifar10_valid_200, xlist))) | ||||
|     #print('-'*200) | ||||
|   #print('*'*230) | ||||
|   return cors | ||||
|     if isinstance(meta_file, API): | ||||
|         api = meta_file | ||||
|     else: | ||||
|         api = API(str(meta_file)) | ||||
|     cifar10_currs = [] | ||||
|     cifar10_valid = [] | ||||
|     cifar10_test = [] | ||||
|     cifar100_valid = [] | ||||
|     cifar100_test = [] | ||||
|     imagenet_test = [] | ||||
|     imagenet_valid = [] | ||||
|     for idx, arch in enumerate(api): | ||||
|         results = api.get_more_info(idx, "cifar10-valid", test_epoch - 1, use_less_or_not, is_rand) | ||||
|         cifar10_currs.append(results["valid-accuracy"]) | ||||
|         # --->>>>> | ||||
|         results = api.get_more_info(idx, "cifar10-valid", None, False, is_rand) | ||||
|         cifar10_valid.append(results["valid-accuracy"]) | ||||
|         results = api.get_more_info(idx, "cifar10", None, False, is_rand) | ||||
|         cifar10_test.append(results["test-accuracy"]) | ||||
|         results = api.get_more_info(idx, "cifar100", None, False, is_rand) | ||||
|         cifar100_test.append(results["test-accuracy"]) | ||||
|         cifar100_valid.append(results["valid-accuracy"]) | ||||
|         results = api.get_more_info(idx, "ImageNet16-120", None, False, is_rand) | ||||
|         imagenet_test.append(results["test-accuracy"]) | ||||
|         imagenet_valid.append(results["valid-accuracy"]) | ||||
|  | ||||
|     def get_cor(A, B): | ||||
|         return float(np.corrcoef(A, B)[0, 1]) | ||||
|  | ||||
|     cors = [] | ||||
|     for basestr, xlist in zip( | ||||
|         ["C-010-V", "C-010-T", "C-100-V", "C-100-T", "I16-V", "I16-T"], | ||||
|         [cifar10_valid, cifar10_test, cifar100_valid, cifar100_test, imagenet_valid, imagenet_test], | ||||
|     ): | ||||
|         correlation = get_cor(cifar10_currs, xlist) | ||||
|         if need_print: | ||||
|             print( | ||||
|                 "With {:3d}/{:}-epochs-training, the correlation between cifar10-valid and {:} is : {:}".format( | ||||
|                     test_epoch, "012" if use_less_or_not else "200", basestr, correlation | ||||
|                 ) | ||||
|             ) | ||||
|         cors.append(correlation) | ||||
|         # print ('With {:3d}/200-epochs-training, the correlation between cifar10-valid and {:} is : {:}'.format(test_epoch, basestr, get_cor(cifar10_valid_200, xlist))) | ||||
|         # print('-'*200) | ||||
|     # print('*'*230) | ||||
|     return cors | ||||
|  | ||||
|  | ||||
| def check_cor_for_bandit_v2(meta_file, test_epoch, use_less_or_not, is_rand): | ||||
|   corrs = [] | ||||
|   for i in tqdm(range(100)): | ||||
|     x = check_cor_for_bandit(meta_file, test_epoch, use_less_or_not, is_rand, False) | ||||
|     corrs.append( x ) | ||||
|   #xstrs = ['CIFAR-010', 'C-100-V', 'C-100-T', 'I16-V', 'I16-T'] | ||||
|   xstrs = ['C-010-V', 'C-010-T', 'C-100-V', 'C-100-T', 'I16-V', 'I16-T'] | ||||
|   correlations = np.array(corrs) | ||||
|   print('------>>>>>>>> {:03d}/{:} >>>>>>>> ------'.format(test_epoch, '012' if use_less_or_not else '200')) | ||||
|   for idx, xstr in enumerate(xstrs): | ||||
|     print ('{:8s} ::: mean={:.4f}, std={:.4f} :: {:.4f}\\pm{:.4f}'.format(xstr, correlations[:,idx].mean(), correlations[:,idx].std(), correlations[:,idx].mean(), correlations[:,idx].std())) | ||||
|   print('') | ||||
|     corrs = [] | ||||
|     for i in tqdm(range(100)): | ||||
|         x = check_cor_for_bandit(meta_file, test_epoch, use_less_or_not, is_rand, False) | ||||
|         corrs.append(x) | ||||
|     # xstrs = ['CIFAR-010', 'C-100-V', 'C-100-T', 'I16-V', 'I16-T'] | ||||
|     xstrs = ["C-010-V", "C-010-T", "C-100-V", "C-100-T", "I16-V", "I16-T"] | ||||
|     correlations = np.array(corrs) | ||||
|     print("------>>>>>>>> {:03d}/{:} >>>>>>>> ------".format(test_epoch, "012" if use_less_or_not else "200")) | ||||
|     for idx, xstr in enumerate(xstrs): | ||||
|         print( | ||||
|             "{:8s} ::: mean={:.4f}, std={:.4f} :: {:.4f}\\pm{:.4f}".format( | ||||
|                 xstr, | ||||
|                 correlations[:, idx].mean(), | ||||
|                 correlations[:, idx].std(), | ||||
|                 correlations[:, idx].mean(), | ||||
|                 correlations[:, idx].std(), | ||||
|             ) | ||||
|         ) | ||||
|     print("") | ||||
|  | ||||
|  | ||||
| if __name__ == '__main__': | ||||
|   parser = argparse.ArgumentParser("Analysis of NAS-Bench-201") | ||||
|   parser.add_argument('--save_dir',  type=str, default='./output/search-cell-nas-bench-201/visuals', help='The base-name of folder to save checkpoints and log.') | ||||
|   parser.add_argument('--api_path',  type=str, default=None,                                         help='The path to the NAS-Bench-201 benchmark file.') | ||||
|   args = parser.parse_args() | ||||
| if __name__ == "__main__": | ||||
|     parser = argparse.ArgumentParser("Analysis of NAS-Bench-201") | ||||
|     parser.add_argument( | ||||
|         "--save_dir", | ||||
|         type=str, | ||||
|         default="./output/search-cell-nas-bench-201/visuals", | ||||
|         help="The base-name of folder to save checkpoints and log.", | ||||
|     ) | ||||
|     parser.add_argument("--api_path", type=str, default=None, help="The path to the NAS-Bench-201 benchmark file.") | ||||
|     args = parser.parse_args() | ||||
|  | ||||
|   vis_save_dir = Path(args.save_dir) | ||||
|   vis_save_dir.mkdir(parents=True, exist_ok=True) | ||||
|   meta_file = Path(args.api_path) | ||||
|   assert meta_file.exists(), 'invalid path for api : {:}'.format(meta_file) | ||||
|     vis_save_dir = Path(args.save_dir) | ||||
|     vis_save_dir.mkdir(parents=True, exist_ok=True) | ||||
|     meta_file = Path(args.api_path) | ||||
|     assert meta_file.exists(), "invalid path for api : {:}".format(meta_file) | ||||
|  | ||||
|   #check_unique_arch(meta_file) | ||||
|   api = API(str(meta_file)) | ||||
|   #for iepoch in [11, 25, 50, 100, 150, 175, 200]: | ||||
|   #  check_cor_for_bandit(api,  6, iepoch) | ||||
|   #  check_cor_for_bandit(api, 12, iepoch) | ||||
|   check_cor_for_bandit_v2(api,   6,  True, True) | ||||
|   check_cor_for_bandit_v2(api,  12,  True, True) | ||||
|   check_cor_for_bandit_v2(api,  12, False, True) | ||||
|   check_cor_for_bandit_v2(api,  24, False, True) | ||||
|   check_cor_for_bandit_v2(api, 100, False, True) | ||||
|   check_cor_for_bandit_v2(api, 150, False, True) | ||||
|   check_cor_for_bandit_v2(api, 175, False, True) | ||||
|   check_cor_for_bandit_v2(api, 200, False, True) | ||||
|   print('----') | ||||
|     # check_unique_arch(meta_file) | ||||
|     api = API(str(meta_file)) | ||||
|     # for iepoch in [11, 25, 50, 100, 150, 175, 200]: | ||||
|     #  check_cor_for_bandit(api,  6, iepoch) | ||||
|     #  check_cor_for_bandit(api, 12, iepoch) | ||||
|     check_cor_for_bandit_v2(api, 6, True, True) | ||||
|     check_cor_for_bandit_v2(api, 12, True, True) | ||||
|     check_cor_for_bandit_v2(api, 12, False, True) | ||||
|     check_cor_for_bandit_v2(api, 24, False, True) | ||||
|     check_cor_for_bandit_v2(api, 100, False, True) | ||||
|     check_cor_for_bandit_v2(api, 150, False, True) | ||||
|     check_cor_for_bandit_v2(api, 175, False, True) | ||||
|     check_cor_for_bandit_v2(api, 200, False, True) | ||||
|     print("----") | ||||
|   | ||||
										
											
												File diff suppressed because it is too large
												Load Diff
											
										
									
								
							
		Reference in New Issue
	
	Block a user