clean headers
This commit is contained in:
parent
975fe4c385
commit
fac556c176
3
.gitignore
vendored
3
.gitignore
vendored
@ -107,3 +107,6 @@ scripts-nas/.nfs00*
|
|||||||
# logs and snapshots
|
# logs and snapshots
|
||||||
output
|
output
|
||||||
logs
|
logs
|
||||||
|
|
||||||
|
# snapshot
|
||||||
|
a.pth
|
||||||
|
@ -5,7 +5,6 @@ This project contains the following neural architecture search algorithms, imple
|
|||||||
- Network Pruning via Transformable Architecture Search, NeurIPS 2019
|
- Network Pruning via Transformable Architecture Search, NeurIPS 2019
|
||||||
- One-Shot Neural Architecture Search via Self-Evaluated Template Network, ICCV 2019
|
- One-Shot Neural Architecture Search via Self-Evaluated Template Network, ICCV 2019
|
||||||
- Searching for A Robust Neural Architecture in Four GPU Hours, CVPR 2019
|
- Searching for A Robust Neural Architecture in Four GPU Hours, CVPR 2019
|
||||||
- Auto-ReID: Searching for a Part-Aware ConvNet for Person Re-Identification, ICCV 2019
|
|
||||||
- several typical classification models, e.g., ResNet and DenseNet (see BASELINE.md)
|
- several typical classification models, e.g., ResNet and DenseNet (see BASELINE.md)
|
||||||
|
|
||||||
|
|
||||||
@ -104,12 +103,6 @@ CUDA_VISIBLE_DEVICES=0 bash ./scripts-search/algos/DARTS-V2.sh cifar10 -1
|
|||||||
```
|
```
|
||||||
|
|
||||||
|
|
||||||
## [Auto-ReID: Searching for a Part-Aware ConvNet for Person Re-Identification](https://arxiv.org/abs/1903.09776)
|
|
||||||
|
|
||||||
The part-aware module is defined at [here](https://github.com/D-X-Y/NAS-Projects/blob/master/lib/models/cell_searchs/operations.py#L85).
|
|
||||||
|
|
||||||
For more questions, please contact Ruijie Quan (Ruijie.Quan@student.uts.edu.au).
|
|
||||||
|
|
||||||
# Citation
|
# Citation
|
||||||
|
|
||||||
If you find that this project helps your research, please consider citing some of the following papers:
|
If you find that this project helps your research, please consider citing some of the following papers:
|
||||||
|
@ -1,274 +0,0 @@
|
|||||||
##################################################
|
|
||||||
# Copyright (c) Xuanyi Dong [GitHub D-X-Y], 2019 #
|
|
||||||
##################################################
|
|
||||||
import os, sys, time, torch, random, argparse
|
|
||||||
from PIL import ImageFile
|
|
||||||
ImageFile.LOAD_TRUNCATED_IMAGES = True
|
|
||||||
from copy import deepcopy
|
|
||||||
from pathlib import Path
|
|
||||||
|
|
||||||
lib_dir = (Path(__file__).parent / '..' / 'lib').resolve()
|
|
||||||
if str(lib_dir) not in sys.path: sys.path.insert(0, str(lib_dir))
|
|
||||||
from config_utils import load_config
|
|
||||||
from procedures import save_checkpoint, copy_checkpoint
|
|
||||||
from procedures import get_machine_info
|
|
||||||
from datasets import get_datasets
|
|
||||||
from log_utils import Logger, AverageMeter, time_string, convert_secs2time
|
|
||||||
from models import CellStructure, CellArchitectures, get_search_spaces
|
|
||||||
from AA_functions import evaluate_for_seed
|
|
||||||
|
|
||||||
|
|
||||||
def evaluate_all_datasets(arch, datasets, xpaths, splits, seed, arch_config, workers, logger):
|
|
||||||
machine_info, arch_config = get_machine_info(), deepcopy(arch_config)
|
|
||||||
all_infos = {'info': machine_info}
|
|
||||||
all_dataset_keys = []
|
|
||||||
# look all the datasets
|
|
||||||
for dataset, xpath, split in zip(datasets, xpaths, splits):
|
|
||||||
# train valid data
|
|
||||||
train_data, valid_data, xshape, class_num = get_datasets(dataset, xpath, -1)
|
|
||||||
# load the configurature
|
|
||||||
if dataset == 'cifar10' or dataset == 'cifar100':
|
|
||||||
config_path = 'configs/nas-benchmark/CIFAR.config'
|
|
||||||
split_info = load_config('configs/nas-benchmark/cifar-split.txt', None, None)
|
|
||||||
elif dataset.startswith('ImageNet16'):
|
|
||||||
config_path = 'configs/nas-benchmark/ImageNet-16.config'
|
|
||||||
split_info = load_config('configs/nas-benchmark/{:}-split.txt'.format(dataset), None, None)
|
|
||||||
else:
|
|
||||||
raise ValueError('invalid dataset : {:}'.format(dataset))
|
|
||||||
config = load_config(config_path, \
|
|
||||||
{'class_num': class_num,
|
|
||||||
'xshape' : xshape}, \
|
|
||||||
logger)
|
|
||||||
# check whether use splited validation set
|
|
||||||
if bool(split):
|
|
||||||
assert len(train_data) == len(split_info.train) + len(split_info.valid), 'invalid length : {:} vs {:} + {:}'.format(len(train_data), len(split_info.train), len(split_info.valid))
|
|
||||||
train_data_v2 = deepcopy(train_data)
|
|
||||||
train_data_v2.transform = valid_data.transform
|
|
||||||
valid_data = train_data_v2
|
|
||||||
# data loader
|
|
||||||
train_loader = torch.utils.data.DataLoader(train_data, batch_size=config.batch_size, sampler=torch.utils.data.sampler.SubsetRandomSampler(split_info.train), num_workers=workers, pin_memory=True)
|
|
||||||
valid_loader = torch.utils.data.DataLoader(valid_data, batch_size=config.batch_size, sampler=torch.utils.data.sampler.SubsetRandomSampler(split_info.valid), num_workers=workers, pin_memory=True)
|
|
||||||
else:
|
|
||||||
# data loader
|
|
||||||
train_loader = torch.utils.data.DataLoader(train_data, batch_size=config.batch_size, shuffle=True , num_workers=workers, pin_memory=True)
|
|
||||||
valid_loader = torch.utils.data.DataLoader(valid_data, batch_size=config.batch_size, shuffle=False, num_workers=workers, pin_memory=True)
|
|
||||||
|
|
||||||
dataset_key = '{:}'.format(dataset)
|
|
||||||
if bool(split): dataset_key = dataset_key + '-valid'
|
|
||||||
logger.log('Evaluate ||||||| {:10s} ||||||| Train-Num={:}, Valid-Num={:}, Train-Loader-Num={:}, Valid-Loader-Num={:}, batch size={:}'.format(dataset_key, len(train_data), len(valid_data), len(train_loader), len(valid_loader), config.batch_size))
|
|
||||||
logger.log('Evaluate ||||||| {:10s} ||||||| Config={:}'.format(dataset_key, config))
|
|
||||||
results = evaluate_for_seed(arch_config, config, arch, train_loader, valid_loader, seed, logger)
|
|
||||||
all_infos[dataset_key] = results
|
|
||||||
all_dataset_keys.append( dataset_key )
|
|
||||||
all_infos['all_dataset_keys'] = all_dataset_keys
|
|
||||||
return all_infos
|
|
||||||
|
|
||||||
|
|
||||||
def main(save_dir, workers, datasets, xpaths, splits, srange, arch_index, seeds, cover_mode, meta_info, arch_config):
|
|
||||||
assert torch.cuda.is_available(), 'CUDA is not available.'
|
|
||||||
torch.backends.cudnn.enabled = True
|
|
||||||
#torch.backends.cudnn.benchmark = True
|
|
||||||
torch.backends.cudnn.deterministic = True
|
|
||||||
torch.set_num_threads( workers )
|
|
||||||
|
|
||||||
assert len(srange) == 2 and 0 <= srange[0] <= srange[1], 'invalid srange : {:}'.format(srange)
|
|
||||||
|
|
||||||
sub_dir = Path(save_dir) / '{:06d}-{:06d}-C{:}-N{:}'.format(srange[0], srange[1], arch_config['channel'], arch_config['num_cells'])
|
|
||||||
logger = Logger(str(sub_dir), 0, False)
|
|
||||||
|
|
||||||
all_archs = meta_info['archs']
|
|
||||||
assert srange[1] < meta_info['total'], 'invalid range : {:}-{:} vs. {:}'.format(srange[0], srange[1], meta_info['total'])
|
|
||||||
assert arch_index == -1 or srange[0] <= arch_index <= srange[1], 'invalid range : {:} vs. {:} vs. {:}'.format(srange[0], arch_index, srange[1])
|
|
||||||
if arch_index == -1:
|
|
||||||
to_evaluate_indexes = list(range(srange[0], srange[1]+1))
|
|
||||||
else:
|
|
||||||
to_evaluate_indexes = [arch_index]
|
|
||||||
logger.log('xargs : seeds = {:}'.format(seeds))
|
|
||||||
logger.log('xargs : arch_index = {:}'.format(arch_index))
|
|
||||||
logger.log('xargs : cover_mode = {:}'.format(cover_mode))
|
|
||||||
logger.log('-'*100)
|
|
||||||
|
|
||||||
logger.log('Start evaluating range =: {:06d} vs. {:06d} vs. {:06d} / {:06d} with cover-mode={:}'.format(srange[0], arch_index, srange[1], meta_info['total'], cover_mode))
|
|
||||||
for i, (dataset, xpath, split) in enumerate(zip(datasets, xpaths, splits)):
|
|
||||||
logger.log('--->>> Evaluate {:}/{:} : dataset={:9s}, path={:}, split={:}'.format(i, len(datasets), dataset, xpath, split))
|
|
||||||
logger.log('--->>> architecture config : {:}'.format(arch_config))
|
|
||||||
|
|
||||||
|
|
||||||
start_time, epoch_time = time.time(), AverageMeter()
|
|
||||||
for i, index in enumerate(to_evaluate_indexes):
|
|
||||||
arch = all_archs[index]
|
|
||||||
logger.log('\n{:} evaluate {:06d}/{:06d} ({:06d}/{:06d})-th architecture [seeds={:}] {:}'.format('-'*15, i, len(to_evaluate_indexes), index, meta_info['total'], seeds, '-'*15))
|
|
||||||
#logger.log('{:} {:} {:}'.format('-'*15, arch.tostr(), '-'*15))
|
|
||||||
logger.log('{:} {:} {:}'.format('-'*15, arch, '-'*15))
|
|
||||||
|
|
||||||
# test this arch on different datasets with different seeds
|
|
||||||
has_continue = False
|
|
||||||
for seed in seeds:
|
|
||||||
to_save_name = sub_dir / 'arch-{:06d}-seed-{:04d}.pth'.format(index, seed)
|
|
||||||
if to_save_name.exists():
|
|
||||||
if cover_mode:
|
|
||||||
logger.log('Find existing file : {:}, remove it before evaluation'.format(to_save_name))
|
|
||||||
os.remove(str(to_save_name))
|
|
||||||
else :
|
|
||||||
logger.log('Find existing file : {:}, skip this evaluation'.format(to_save_name))
|
|
||||||
has_continue = True
|
|
||||||
continue
|
|
||||||
results = evaluate_all_datasets(CellStructure.str2structure(arch), \
|
|
||||||
datasets, xpaths, splits, seed, \
|
|
||||||
arch_config, workers, logger)
|
|
||||||
torch.save(results, to_save_name)
|
|
||||||
logger.log('{:} valuate {:06d}/{:06d} ({:06d}/{:06d})-th seed={:} done, save into {:}'.format('-'*15, i, len(to_evaluate_indexes), index, meta_info['total'], seed, to_save_name))
|
|
||||||
# measure elapsed time
|
|
||||||
if not has_continue: epoch_time.update(time.time() - start_time)
|
|
||||||
start_time = time.time()
|
|
||||||
need_time = 'Time Left: {:}'.format( convert_secs2time(epoch_time.avg * (len(to_evaluate_indexes)-i-1), True) )
|
|
||||||
logger.log('This arch costs : {:}'.format( convert_secs2time(epoch_time.val, True) ))
|
|
||||||
logger.log('{:}'.format('*'*100))
|
|
||||||
logger.log('{:} {:74s} {:}'.format('*'*10, '{:06d}/{:06d} ({:06d}/{:06d})-th done, left {:}'.format(i, len(to_evaluate_indexes), index, meta_info['total'], need_time), '*'*10))
|
|
||||||
logger.log('{:}'.format('*'*100))
|
|
||||||
|
|
||||||
logger.close()
|
|
||||||
|
|
||||||
|
|
||||||
def train_single_model(save_dir, workers, datasets, xpaths, splits, seeds, model_str, arch_config):
|
|
||||||
assert torch.cuda.is_available(), 'CUDA is not available.'
|
|
||||||
torch.backends.cudnn.enabled = True
|
|
||||||
torch.backends.cudnn.deterministic = True
|
|
||||||
#torch.backends.cudnn.benchmark = True
|
|
||||||
torch.set_num_threads( workers )
|
|
||||||
|
|
||||||
save_dir = Path(save_dir) / 'specifics' / '{:}-{:}-{:}'.format(model_str, arch_config['channel'], arch_config['num_cells'])
|
|
||||||
logger = Logger(str(save_dir), 0, False)
|
|
||||||
if model_str in CellArchitectures:
|
|
||||||
arch = CellArchitectures[model_str]
|
|
||||||
logger.log('The model string is found in pre-defined architecture dict : {:}'.format(model_str))
|
|
||||||
else:
|
|
||||||
try:
|
|
||||||
arch = CellStructure.str2structure(model_str)
|
|
||||||
except:
|
|
||||||
raise ValueError('Invalid model string : {:}. It can not be found or parsed.'.format(model_str))
|
|
||||||
assert arch.check_valid_op(get_search_spaces('cell', 'full')), '{:} has the invalid op.'.format(arch)
|
|
||||||
logger.log('Start train-evaluate {:}'.format(arch.tostr()))
|
|
||||||
logger.log('arch_config : {:}'.format(arch_config))
|
|
||||||
|
|
||||||
start_time, seed_time = time.time(), AverageMeter()
|
|
||||||
for _is, seed in enumerate(seeds):
|
|
||||||
logger.log('\nThe {:02d}/{:02d}-th seed is {:} ----------------------<.>----------------------'.format(_is, len(seeds), seed))
|
|
||||||
to_save_name = save_dir / 'seed-{:04d}.pth'.format(seed)
|
|
||||||
if to_save_name.exists():
|
|
||||||
logger.log('Find the existing file {:}, directly load!'.format(to_save_name))
|
|
||||||
checkpoint = torch.load(to_save_name)
|
|
||||||
else:
|
|
||||||
logger.log('Does not find the existing file {:}, train and evaluate!'.format(to_save_name))
|
|
||||||
checkpoint = evaluate_all_datasets(arch, datasets, xpaths, splits, seed, arch_config, workers, logger)
|
|
||||||
torch.save(checkpoint, to_save_name)
|
|
||||||
# log information
|
|
||||||
logger.log('{:}'.format(checkpoint['info']))
|
|
||||||
all_dataset_keys = checkpoint['all_dataset_keys']
|
|
||||||
for dataset_key in all_dataset_keys:
|
|
||||||
logger.log('\n{:} dataset : {:} {:}'.format('-'*15, dataset_key, '-'*15))
|
|
||||||
dataset_info = checkpoint[dataset_key]
|
|
||||||
#logger.log('Network ==>\n{:}'.format( dataset_info['net_string'] ))
|
|
||||||
logger.log('Flops = {:} MB, Params = {:} MB'.format(dataset_info['flop'], dataset_info['param']))
|
|
||||||
logger.log('config : {:}'.format(dataset_info['config']))
|
|
||||||
logger.log('Training State (finish) = {:}'.format(dataset_info['finish-train']))
|
|
||||||
last_epoch = dataset_info['total_epoch'] - 1
|
|
||||||
train_acc1es, train_acc5es = dataset_info['train_acc1es'], dataset_info['train_acc5es']
|
|
||||||
valid_acc1es, valid_acc5es = dataset_info['valid_acc1es'], dataset_info['valid_acc5es']
|
|
||||||
logger.log('Last Info : Train = Acc@1 {:.2f}% Acc@5 {:.2f}% Error@1 {:.2f}%, Test = Acc@1 {:.2f}% Acc@5 {:.2f}% Error@1 {:.2f}%'.format(train_acc1es[last_epoch], train_acc5es[last_epoch], 100-train_acc1es[last_epoch], valid_acc1es[last_epoch], valid_acc5es[last_epoch], 100-valid_acc1es[last_epoch]))
|
|
||||||
# measure elapsed time
|
|
||||||
seed_time.update(time.time() - start_time)
|
|
||||||
start_time = time.time()
|
|
||||||
need_time = 'Time Left: {:}'.format( convert_secs2time(seed_time.avg * (len(seeds)-_is-1), True) )
|
|
||||||
logger.log('\n<<<***>>> The {:02d}/{:02d}-th seed is {:} <finish> other procedures need {:}'.format(_is, len(seeds), seed, need_time))
|
|
||||||
logger.close()
|
|
||||||
|
|
||||||
|
|
||||||
def generate_meta_info(save_dir, max_node, divide=40):
|
|
||||||
aa_nas_bench_ss = get_search_spaces('cell', 'aa-nas')
|
|
||||||
archs = CellStructure.gen_all(aa_nas_bench_ss, max_node, False)
|
|
||||||
print ('There are {:} archs vs {:}.'.format(len(archs), len(aa_nas_bench_ss) ** ((max_node-1)*max_node/2)))
|
|
||||||
|
|
||||||
random.seed( 88 ) # please do not change this line for reproducibility
|
|
||||||
random.shuffle( archs )
|
|
||||||
# to test fixed-random shuffle
|
|
||||||
#print ('arch [0] : {:}\n---->>>> {:}'.format( archs[0], archs[0].tostr() ))
|
|
||||||
#print ('arch [9] : {:}\n---->>>> {:}'.format( archs[9], archs[9].tostr() ))
|
|
||||||
assert archs[0 ].tostr() == '|avg_pool_3x3~0|+|nor_conv_1x1~0|skip_connect~1|+|nor_conv_1x1~0|skip_connect~1|skip_connect~2|', 'please check the 0-th architecture : {:}'.format(archs[0])
|
|
||||||
assert archs[9 ].tostr() == '|avg_pool_3x3~0|+|none~0|none~1|+|skip_connect~0|none~1|nor_conv_3x3~2|', 'please check the 9-th architecture : {:}'.format(archs[9])
|
|
||||||
assert archs[123].tostr() == '|avg_pool_3x3~0|+|avg_pool_3x3~0|nor_conv_1x1~1|+|none~0|avg_pool_3x3~1|nor_conv_3x3~2|', 'please check the 123-th architecture : {:}'.format(archs[123])
|
|
||||||
total_arch = len(archs)
|
|
||||||
|
|
||||||
num = 50000
|
|
||||||
indexes_5W = list(range(num))
|
|
||||||
random.seed( 1021 )
|
|
||||||
random.shuffle( indexes_5W )
|
|
||||||
train_split = sorted( list(set(indexes_5W[:num//2])) )
|
|
||||||
valid_split = sorted( list(set(indexes_5W[num//2:])) )
|
|
||||||
assert len(train_split) + len(valid_split) == num
|
|
||||||
assert train_split[0] == 0 and train_split[10] == 26 and train_split[111] == 203 and valid_split[0] == 1 and valid_split[10] == 18 and valid_split[111] == 242, '{:} {:} {:} - {:} {:} {:}'.format(train_split[0], train_split[10], train_split[111], valid_split[0], valid_split[10], valid_split[111])
|
|
||||||
splits = {num: {'train': train_split, 'valid': valid_split} }
|
|
||||||
|
|
||||||
info = {'archs' : [x.tostr() for x in archs],
|
|
||||||
'total' : total_arch,
|
|
||||||
'max_node' : max_node,
|
|
||||||
'splits': splits}
|
|
||||||
|
|
||||||
save_dir = Path(save_dir)
|
|
||||||
save_dir.mkdir(parents=True, exist_ok=True)
|
|
||||||
save_name = save_dir / 'meta-node-{:}.pth'.format(max_node)
|
|
||||||
assert not save_name.exists(), '{:} already exist'.format(save_name)
|
|
||||||
torch.save(info, save_name)
|
|
||||||
print ('save the meta file into {:}'.format(save_name))
|
|
||||||
|
|
||||||
script_name = save_dir / 'meta-node-{:}.script.txt'.format(max_node)
|
|
||||||
with open(str(script_name), 'w') as cfile:
|
|
||||||
gaps = total_arch // divide
|
|
||||||
for start in range(0, total_arch, gaps):
|
|
||||||
xend = min(start+gaps, total_arch)
|
|
||||||
cfile.write('bash ./scripts-search/AA-NAS-train-archs.sh {:5d} {:5d} -1 \'777 888 999\'\n'.format(start, xend-1))
|
|
||||||
print ('save the training script into {:}'.format(script_name))
|
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
if __name__ == '__main__':
|
|
||||||
#mode_choices = ['meta', 'new', 'cover'] + ['specific-{:}'.format(_) for _ in CellArchitectures.keys()]
|
|
||||||
parser = argparse.ArgumentParser(description='Algorithm-Agnostic NAS Benchmark', formatter_class=argparse.ArgumentDefaultsHelpFormatter)
|
|
||||||
parser.add_argument('--mode' , type=str, required=True, help='The script mode.')
|
|
||||||
parser.add_argument('--save_dir', type=str, help='Folder to save checkpoints and log.')
|
|
||||||
parser.add_argument('--max_node', type=int, help='The maximum node in a cell.')
|
|
||||||
# use for train the model
|
|
||||||
parser.add_argument('--workers', type=int, default=8, help='number of data loading workers (default: 2)')
|
|
||||||
parser.add_argument('--srange' , type=int, nargs='+', help='The range of models to be evaluated')
|
|
||||||
parser.add_argument('--arch_index', type=int, default=-1, help='The architecture index to be evaluated (cover mode).')
|
|
||||||
parser.add_argument('--datasets', type=str, nargs='+', help='The applied datasets.')
|
|
||||||
parser.add_argument('--xpaths', type=str, nargs='+', help='The root path for this dataset.')
|
|
||||||
parser.add_argument('--splits', type=int, nargs='+', help='The root path for this dataset.')
|
|
||||||
parser.add_argument('--seeds' , type=int, nargs='+', help='The range of models to be evaluated')
|
|
||||||
parser.add_argument('--channel', type=int, help='The number of channels.')
|
|
||||||
parser.add_argument('--num_cells', type=int, help='The number of cells in one stage.')
|
|
||||||
args = parser.parse_args()
|
|
||||||
|
|
||||||
assert args.mode in ['meta', 'new', 'cover'] or args.mode.startswith('specific-'), 'invalid mode : {:}'.format(args.mode)
|
|
||||||
|
|
||||||
if args.mode == 'meta':
|
|
||||||
generate_meta_info(args.save_dir, args.max_node)
|
|
||||||
elif args.mode.startswith('specific'):
|
|
||||||
assert len(args.mode.split('-')) == 2, 'invalid mode : {:}'.format(args.mode)
|
|
||||||
model_str = args.mode.split('-')[1]
|
|
||||||
train_single_model(args.save_dir, args.workers, args.datasets, args.xpaths, args.splits, \
|
|
||||||
tuple(args.seeds), model_str, {'channel': args.channel, 'num_cells': args.num_cells})
|
|
||||||
else:
|
|
||||||
meta_path = Path(args.save_dir) / 'meta-node-{:}.pth'.format(args.max_node)
|
|
||||||
assert meta_path.exists(), '{:} does not exist.'.format(meta_path)
|
|
||||||
meta_info = torch.load( meta_path )
|
|
||||||
# check whether args is ok
|
|
||||||
assert len(args.srange) == 2 and args.srange[0] <= args.srange[1], 'invalid length of srange args: {:}'.format(args.srange)
|
|
||||||
assert len(args.seeds) > 0, 'invalid length of seeds args: {:}'.format(args.seeds)
|
|
||||||
assert len(args.datasets) == len(args.xpaths) == len(args.splits), 'invalid infos : {:} vs {:} vs {:}'.format(len(args.datasets), len(args.xpaths), len(args.splits))
|
|
||||||
assert args.workers > 0, 'invalid number of workers : {:}'.format(args.workers)
|
|
||||||
|
|
||||||
main(args.save_dir, args.workers, args.datasets, args.xpaths, args.splits, \
|
|
||||||
tuple(args.srange), args.arch_index, tuple(args.seeds), \
|
|
||||||
args.mode == 'cover', meta_info, \
|
|
||||||
{'channel': args.channel, 'num_cells': args.num_cells})
|
|
38
exps/AA-NAS-test-API.py
Normal file
38
exps/AA-NAS-test-API.py
Normal file
@ -0,0 +1,38 @@
|
|||||||
|
import os, sys, time, queue, torch
|
||||||
|
from pathlib import Path
|
||||||
|
|
||||||
|
lib_dir = (Path(__file__).parent / '..' / 'lib').resolve()
|
||||||
|
if str(lib_dir) not in sys.path: sys.path.insert(0, str(lib_dir))
|
||||||
|
|
||||||
|
from log_utils import time_string
|
||||||
|
from models import CellStructure
|
||||||
|
|
||||||
|
def get_unique_matrix(archs, consider_zero):
|
||||||
|
UniquStrs = [arch.to_unique_str(consider_zero) for arch in archs]
|
||||||
|
print ('{:} create unique-string done'.format(time_string()))
|
||||||
|
sm_matrix = torch.eye(len(archs)).bool()
|
||||||
|
for i, _ in enumerate(UniquStrs):
|
||||||
|
for j in range(i):
|
||||||
|
sm_matrix[i,j] = sm_matrix[j,i] = UniquStrs[i] == UniquStrs[j]
|
||||||
|
unique_ids, unique_num = [-1 for _ in archs], 0
|
||||||
|
for i in range(len(unique_ids)):
|
||||||
|
if unique_ids[i] > -1: continue
|
||||||
|
neighbours = sm_matrix[i].nonzero().view(-1).tolist()
|
||||||
|
for nghb in neighbours:
|
||||||
|
assert unique_ids[nghb] == -1, 'impossible'
|
||||||
|
unique_ids[nghb] = unique_num
|
||||||
|
unique_num += 1
|
||||||
|
return sm_matrix, unique_ids, unique_num
|
||||||
|
|
||||||
|
def check_unique_arch():
|
||||||
|
print ('{:} start'.format(time_string()))
|
||||||
|
meta_info = torch.load('./output/AA-NAS-BENCH-4/meta-node-4.pth')
|
||||||
|
arch_strs = meta_info['archs']
|
||||||
|
archs = [CellStructure.str2structure(arch_str) for arch_str in arch_strs]
|
||||||
|
_, _, unique_num = get_unique_matrix(archs, False)
|
||||||
|
print ('{:} There are {:} unique architectures (not considering zero).'.format(time_string(), unique_num))
|
||||||
|
_, _, unique_num = get_unique_matrix(archs, True)
|
||||||
|
print ('{:} There are {:} unique architectures (considering zero).'.format(time_string(), unique_num))
|
||||||
|
|
||||||
|
if __name__ == '__main__':
|
||||||
|
check_unique_arch()
|
@ -1,6 +1,3 @@
|
|||||||
##################################################
|
|
||||||
# Copyright (c) Xuanyi Dong [GitHub D-X-Y], 2019 #
|
|
||||||
##################################################
|
|
||||||
from .configure_utils import load_config, dict2config, configure2str
|
from .configure_utils import load_config, dict2config, configure2str
|
||||||
from .basic_args import obtain_basic_args
|
from .basic_args import obtain_basic_args
|
||||||
from .attention_args import obtain_attention_args
|
from .attention_args import obtain_attention_args
|
||||||
|
@ -1,6 +1,3 @@
|
|||||||
##################################################
|
|
||||||
# Copyright (c) Xuanyi Dong [GitHub D-X-Y], 2019 #
|
|
||||||
##################################################
|
|
||||||
import os, sys, time, random, argparse
|
import os, sys, time, random, argparse
|
||||||
from .share_args import add_shared_args
|
from .share_args import add_shared_args
|
||||||
|
|
||||||
|
@ -1,6 +1,3 @@
|
|||||||
##################################################
|
|
||||||
# Copyright (c) Xuanyi Dong [GitHub D-X-Y], 2019 #
|
|
||||||
##################################################
|
|
||||||
import os, sys, time, random, argparse
|
import os, sys, time, random, argparse
|
||||||
from .share_args import add_shared_args
|
from .share_args import add_shared_args
|
||||||
|
|
||||||
|
@ -1,6 +1,3 @@
|
|||||||
##################################################
|
|
||||||
# Copyright (c) Xuanyi Dong [GitHub D-X-Y], 2019 #
|
|
||||||
##################################################
|
|
||||||
import os, sys, time, random, argparse
|
import os, sys, time, random, argparse
|
||||||
from .share_args import add_shared_args
|
from .share_args import add_shared_args
|
||||||
|
|
||||||
|
@ -1,6 +1,3 @@
|
|||||||
##################################################
|
|
||||||
# Copyright (c) Xuanyi Dong [GitHub D-X-Y], 2019 #
|
|
||||||
##################################################
|
|
||||||
import os, sys, time, random, argparse
|
import os, sys, time, random, argparse
|
||||||
from .share_args import add_shared_args
|
from .share_args import add_shared_args
|
||||||
|
|
||||||
|
@ -1,6 +1,3 @@
|
|||||||
##################################################
|
|
||||||
# Copyright (c) Xuanyi Dong [GitHub D-X-Y], 2019 #
|
|
||||||
##################################################
|
|
||||||
import os, sys, time, random, argparse
|
import os, sys, time, random, argparse
|
||||||
from .share_args import add_shared_args
|
from .share_args import add_shared_args
|
||||||
|
|
||||||
|
@ -1,6 +1,3 @@
|
|||||||
##################################################
|
|
||||||
# Copyright (c) Xuanyi Dong [GitHub D-X-Y], 2019 #
|
|
||||||
##################################################
|
|
||||||
import os, sys, time, random, argparse
|
import os, sys, time, random, argparse
|
||||||
from .share_args import add_shared_args
|
from .share_args import add_shared_args
|
||||||
|
|
||||||
|
@ -1,6 +1,3 @@
|
|||||||
##################################################
|
|
||||||
# Copyright (c) Xuanyi Dong [GitHub D-X-Y], 2019 #
|
|
||||||
##################################################
|
|
||||||
import os, sys, time, random, argparse
|
import os, sys, time, random, argparse
|
||||||
from .share_args import add_shared_args
|
from .share_args import add_shared_args
|
||||||
|
|
||||||
|
@ -1,6 +1,3 @@
|
|||||||
##################################################
|
|
||||||
# Copyright (c) Xuanyi Dong [GitHub D-X-Y], 2019 #
|
|
||||||
##################################################
|
|
||||||
import os, sys, time, random, argparse
|
import os, sys, time, random, argparse
|
||||||
from .share_args import add_shared_args
|
from .share_args import add_shared_args
|
||||||
|
|
||||||
|
@ -1,6 +1,3 @@
|
|||||||
##################################################
|
|
||||||
# Copyright (c) Xuanyi Dong [GitHub D-X-Y], 2019 #
|
|
||||||
##################################################
|
|
||||||
import os, sys, time, random, argparse
|
import os, sys, time, random, argparse
|
||||||
|
|
||||||
def add_shared_args( parser ):
|
def add_shared_args( parser ):
|
||||||
|
@ -1,5 +1,2 @@
|
|||||||
##################################################
|
|
||||||
# Copyright (c) Xuanyi Dong [GitHub D-X-Y], 2019 #
|
|
||||||
##################################################
|
|
||||||
from .get_dataset_with_transform import get_datasets
|
from .get_dataset_with_transform import get_datasets
|
||||||
from .SearchDatasetWrap import SearchDataset
|
from .SearchDatasetWrap import SearchDataset
|
||||||
|
@ -1,6 +1,3 @@
|
|||||||
##################################################
|
|
||||||
# Copyright (c) Xuanyi Dong [GitHub D-X-Y], 2019 #
|
|
||||||
##################################################
|
|
||||||
import os, sys, torch
|
import os, sys, torch
|
||||||
import os.path as osp
|
import os.path as osp
|
||||||
import numpy as np
|
import numpy as np
|
||||||
|
@ -1,6 +1,3 @@
|
|||||||
##################################################
|
|
||||||
# Copyright (c) Xuanyi Dong [GitHub D-X-Y], 2019 #
|
|
||||||
##################################################
|
|
||||||
from .logger import Logger
|
from .logger import Logger
|
||||||
from .print_logger import PrintLogger
|
from .print_logger import PrintLogger
|
||||||
from .meter import AverageMeter
|
from .meter import AverageMeter
|
||||||
|
@ -1,6 +1,3 @@
|
|||||||
##################################################
|
|
||||||
# Copyright (c) Xuanyi Dong [GitHub D-X-Y], 2019 #
|
|
||||||
##################################################
|
|
||||||
import time, sys
|
import time, sys
|
||||||
import numpy as np
|
import numpy as np
|
||||||
|
|
||||||
|
@ -1,8 +1,4 @@
|
|||||||
##################################################
|
import os, sys, time
|
||||||
# Copyright (c) Xuanyi Dong [GitHub D-X-Y], 2019 #
|
|
||||||
##################################################
|
|
||||||
import importlib, warnings
|
|
||||||
import os, sys, time, numpy as np
|
|
||||||
|
|
||||||
|
|
||||||
class PrintLogger(object):
|
class PrintLogger(object):
|
||||||
|
@ -1,6 +1,3 @@
|
|||||||
##################################################
|
|
||||||
# Copyright (c) Xuanyi Dong [GitHub D-X-Y], 2019 #
|
|
||||||
##################################################
|
|
||||||
import torch
|
import torch
|
||||||
import torch.nn as nn
|
import torch.nn as nn
|
||||||
import torch.nn.functional as F
|
import torch.nn.functional as F
|
||||||
|
@ -1,6 +1,3 @@
|
|||||||
##################################################
|
|
||||||
# Copyright (c) Xuanyi Dong [GitHub D-X-Y], 2019 #
|
|
||||||
##################################################
|
|
||||||
import torch
|
import torch
|
||||||
from os import path as osp
|
from os import path as osp
|
||||||
|
|
||||||
|
@ -1,6 +1,3 @@
|
|||||||
##################################################
|
|
||||||
# Copyright (c) Xuanyi Dong [GitHub D-X-Y], 2019 #
|
|
||||||
##################################################
|
|
||||||
import torch
|
import torch
|
||||||
import torch.nn as nn
|
import torch.nn as nn
|
||||||
from copy import deepcopy
|
from copy import deepcopy
|
||||||
|
@ -1,6 +1,3 @@
|
|||||||
##################################################
|
|
||||||
# Copyright (c) Xuanyi Dong [GitHub D-X-Y], 2019 #
|
|
||||||
##################################################
|
|
||||||
import torch
|
import torch
|
||||||
import torch.nn as nn
|
import torch.nn as nn
|
||||||
from ..cell_operations import ResNetBasicblock
|
from ..cell_operations import ResNetBasicblock
|
||||||
|
@ -60,6 +60,24 @@ class Structure:
|
|||||||
strings.append( string )
|
strings.append( string )
|
||||||
return '+'.join(strings)
|
return '+'.join(strings)
|
||||||
|
|
||||||
|
def to_unique_str(self, consider_zero=False):
|
||||||
|
# this is used to identify the isomorphic cell, which rerquires the prior knowledge of operation
|
||||||
|
# two operations are special, i.e., none and skip_connect
|
||||||
|
nodes = {0: '0'}
|
||||||
|
for i_node, node_info in enumerate(self.nodes):
|
||||||
|
cur_node = []
|
||||||
|
for op, xin in node_info:
|
||||||
|
if consider_zero:
|
||||||
|
if op == 'none' or nodes[xin] == '#': x = '#' # zero
|
||||||
|
elif op == 'skip_connect': x = nodes[xin]
|
||||||
|
else: x = nodes[xin] + '@{:}'.format(op)
|
||||||
|
else:
|
||||||
|
if op == 'skip_connect': x = nodes[xin]
|
||||||
|
else: x = nodes[xin] + '@{:}'.format(op)
|
||||||
|
cur_node.append(x)
|
||||||
|
nodes[i_node+1] = '+'.join( sorted(cur_node) )
|
||||||
|
return nodes[ len(self.nodes) ]
|
||||||
|
|
||||||
def check_valid_op(self, op_names):
|
def check_valid_op(self, op_names):
|
||||||
for node_info in self.nodes:
|
for node_info in self.nodes:
|
||||||
for inode_edge in node_info:
|
for inode_edge in node_info:
|
||||||
|
@ -1,5 +1,3 @@
|
|||||||
##################################################
|
|
||||||
# Copyright (c) Xuanyi Dong [GitHub D-X-Y], 2019 #
|
|
||||||
########################################################
|
########################################################
|
||||||
# DARTS: Differentiable Architecture Search, ICLR 2019 #
|
# DARTS: Differentiable Architecture Search, ICLR 2019 #
|
||||||
########################################################
|
########################################################
|
||||||
|
@ -1,5 +1,3 @@
|
|||||||
##################################################
|
|
||||||
# Copyright (c) Xuanyi Dong [GitHub D-X-Y], 2019 #
|
|
||||||
########################################################
|
########################################################
|
||||||
# DARTS: Differentiable Architecture Search, ICLR 2019 #
|
# DARTS: Differentiable Architecture Search, ICLR 2019 #
|
||||||
########################################################
|
########################################################
|
||||||
|
@ -1,5 +1,3 @@
|
|||||||
##################################################
|
|
||||||
# Copyright (c) Xuanyi Dong [GitHub D-X-Y], 2019 #
|
|
||||||
##########################################################################
|
##########################################################################
|
||||||
# Efficient Neural Architecture Search via Parameters Sharing, ICML 2018 #
|
# Efficient Neural Architecture Search via Parameters Sharing, ICML 2018 #
|
||||||
##########################################################################
|
##########################################################################
|
||||||
|
@ -1,5 +1,3 @@
|
|||||||
##################################################
|
|
||||||
# Copyright (c) Xuanyi Dong [GitHub D-X-Y], 2019 #
|
|
||||||
##########################################################################
|
##########################################################################
|
||||||
# Efficient Neural Architecture Search via Parameters Sharing, ICML 2018 #
|
# Efficient Neural Architecture Search via Parameters Sharing, ICML 2018 #
|
||||||
##########################################################################
|
##########################################################################
|
||||||
|
@ -1,5 +1,3 @@
|
|||||||
##################################################
|
|
||||||
# Copyright (c) Xuanyi Dong [GitHub D-X-Y], 2019 #
|
|
||||||
###########################################################################
|
###########################################################################
|
||||||
# Searching for A Robust Neural Architecture in Four GPU Hours, CVPR 2019 #
|
# Searching for A Robust Neural Architecture in Four GPU Hours, CVPR 2019 #
|
||||||
###########################################################################
|
###########################################################################
|
||||||
|
@ -1,5 +1,3 @@
|
|||||||
##################################################
|
|
||||||
# Copyright (c) Xuanyi Dong [GitHub D-X-Y], 2019 #
|
|
||||||
######################################################################################
|
######################################################################################
|
||||||
# One-Shot Neural Architecture Search via Self-Evaluated Template Network, ICCV 2019 #
|
# One-Shot Neural Architecture Search via Self-Evaluated Template Network, ICCV 2019 #
|
||||||
######################################################################################
|
######################################################################################
|
||||||
|
@ -1,5 +1,3 @@
|
|||||||
# Xuanyi Dong
|
|
||||||
|
|
||||||
def parse_channel_info(xstring):
|
def parse_channel_info(xstring):
|
||||||
blocks = xstring.split(' ')
|
blocks = xstring.split(' ')
|
||||||
blocks = [x.split('-') for x in blocks]
|
blocks = [x.split('-') for x in blocks]
|
||||||
|
@ -1,6 +1,3 @@
|
|||||||
##################################################
|
|
||||||
# Copyright (c) Xuanyi Dong [GitHub D-X-Y], 2019 #
|
|
||||||
##################################################
|
|
||||||
from collections import namedtuple
|
from collections import namedtuple
|
||||||
|
|
||||||
Genotype = namedtuple('Genotype', 'normal normal_concat reduce reduce_concat connectN connects')
|
Genotype = namedtuple('Genotype', 'normal normal_concat reduce reduce_concat connectN connects')
|
||||||
|
@ -1,6 +1,3 @@
|
|||||||
##################################################
|
|
||||||
# Copyright (c) Xuanyi Dong [GitHub D-X-Y], 2019 #
|
|
||||||
##################################################
|
|
||||||
import torch
|
import torch
|
||||||
|
|
||||||
def obtain_nas_infer_model(config):
|
def obtain_nas_infer_model(config):
|
||||||
|
@ -1,6 +1,3 @@
|
|||||||
##################################################
|
|
||||||
# Copyright (c) Xuanyi Dong [GitHub D-X-Y], 2019 #
|
|
||||||
##################################################
|
|
||||||
from .starts import prepare_seed, prepare_logger, get_machine_info, save_checkpoint, copy_checkpoint
|
from .starts import prepare_seed, prepare_logger, get_machine_info, save_checkpoint, copy_checkpoint
|
||||||
from .optimizers import get_optim_scheduler
|
from .optimizers import get_optim_scheduler
|
||||||
|
|
||||||
|
@ -1,6 +1,3 @@
|
|||||||
##################################################
|
|
||||||
# Copyright (c) Xuanyi Dong [GitHub D-X-Y], 2019 #
|
|
||||||
##################################################
|
|
||||||
import os, sys, time, torch
|
import os, sys, time, torch
|
||||||
from log_utils import AverageMeter, time_string
|
from log_utils import AverageMeter, time_string
|
||||||
from utils import obtain_accuracy
|
from utils import obtain_accuracy
|
||||||
|
@ -1,6 +1,3 @@
|
|||||||
##################################################
|
|
||||||
# Copyright (c) Xuanyi Dong [GitHub D-X-Y], 2019 #
|
|
||||||
##################################################
|
|
||||||
import math, torch
|
import math, torch
|
||||||
import torch.nn as nn
|
import torch.nn as nn
|
||||||
from bisect import bisect_right
|
from bisect import bisect_right
|
||||||
|
@ -1,6 +1,3 @@
|
|||||||
##################################################
|
|
||||||
# Copyright (c) Xuanyi Dong [GitHub D-X-Y], 2019 #
|
|
||||||
##################################################
|
|
||||||
import os, sys, time, torch
|
import os, sys, time, torch
|
||||||
from log_utils import AverageMeter, time_string
|
from log_utils import AverageMeter, time_string
|
||||||
from utils import obtain_accuracy
|
from utils import obtain_accuracy
|
||||||
|
@ -1,6 +1,3 @@
|
|||||||
##################################################
|
|
||||||
# Copyright (c) Xuanyi Dong [GitHub D-X-Y], 2019 #
|
|
||||||
##################################################
|
|
||||||
import os, sys, time, torch
|
import os, sys, time, torch
|
||||||
from log_utils import AverageMeter, time_string
|
from log_utils import AverageMeter, time_string
|
||||||
from utils import obtain_accuracy
|
from utils import obtain_accuracy
|
||||||
|
@ -1,6 +1,3 @@
|
|||||||
##################################################
|
|
||||||
# Copyright (c) Xuanyi Dong [GitHub D-X-Y], 2019 #
|
|
||||||
##################################################
|
|
||||||
import os, sys, time, torch
|
import os, sys, time, torch
|
||||||
import torch.nn.functional as F
|
import torch.nn.functional as F
|
||||||
# our modules
|
# our modules
|
||||||
|
@ -1,6 +1,3 @@
|
|||||||
##################################################
|
|
||||||
# Copyright (c) Xuanyi Dong [GitHub D-X-Y], 2019 #
|
|
||||||
##################################################
|
|
||||||
from .evaluation_utils import obtain_accuracy
|
from .evaluation_utils import obtain_accuracy
|
||||||
from .gpu_manager import GPUManager
|
from .gpu_manager import GPUManager
|
||||||
from .flop_benchmark import get_model_infos
|
from .flop_benchmark import get_model_infos
|
||||||
|
@ -1,7 +1,3 @@
|
|||||||
##################################################
|
|
||||||
# Copyright (c) Xuanyi Dong [GitHub D-X-Y], 2019 #
|
|
||||||
##################################################
|
|
||||||
# modified from https://github.com/warmspringwinds/pytorch-segmentation-detection/blob/master/pytorch_segmentation_detection/utils/flops_benchmark.py
|
|
||||||
import copy, torch
|
import copy, torch
|
||||||
import torch.nn as nn
|
import torch.nn as nn
|
||||||
import numpy as np
|
import numpy as np
|
||||||
|
Loading…
Reference in New Issue
Block a user