Support GDAS (FRC), see details in docs/CVPR-2019-GDAS.md
This commit is contained in:
		
							
								
								
									
										9
									
								
								configs/search-archs/GDASFRC-NASNet-CIFAR.config
									
									
									
									
									
										Normal file
									
								
							
							
						
						
									
										9
									
								
								configs/search-archs/GDASFRC-NASNet-CIFAR.config
									
									
									
									
									
										Normal file
									
								
							| @@ -0,0 +1,9 @@ | |||||||
|  | { | ||||||
|  |   "super_type"      : ["str",  "nasnet-super"], | ||||||
|  |   "name"            : ["str",  "GDAS_FRC"], | ||||||
|  |   "C"               : ["int",  "16"  ], | ||||||
|  |   "N"               : ["int",  "2"  ], | ||||||
|  |   "steps"           : ["int",  "4"  ], | ||||||
|  |   "multiplier"      : ["int",  "4"  ], | ||||||
|  |   "stem_multiplier" : ["int",  "3"  ] | ||||||
|  | } | ||||||
| @@ -37,9 +37,14 @@ CUDA_VISIBLE_DEVICES=0,1,2,3 bash ./scripts/nas-infer-train.sh imagenet-1k GDAS_ | |||||||
| If you are interested in the configs of each NAS-searched architecture, they are defined at [genotypes.py](https://github.com/D-X-Y/AutoDL-Projects/blob/master/lib/nas_infer_model/DXYs/genotypes.py). | If you are interested in the configs of each NAS-searched architecture, they are defined at [genotypes.py](https://github.com/D-X-Y/AutoDL-Projects/blob/master/lib/nas_infer_model/DXYs/genotypes.py). | ||||||
|  |  | ||||||
| ### Searching on the NASNet search space | ### Searching on the NASNet search space | ||||||
|  |  | ||||||
| Please use the following scripts to use GDAS to search as in the original paper: | Please use the following scripts to use GDAS to search as in the original paper: | ||||||
| ``` | ``` | ||||||
|  | # search for both normal and reduction cells | ||||||
| CUDA_VISIBLE_DEVICES=0 bash ./scripts-search/NASNet-space-search-by-GDAS.sh cifar10 1 -1 | CUDA_VISIBLE_DEVICES=0 bash ./scripts-search/NASNet-space-search-by-GDAS.sh cifar10 1 -1 | ||||||
|  |  | ||||||
|  | # search for the normal cell while use a fixed reduction cell | ||||||
|  | CUDA_VISIBLE_DEVICES=0 bash ./scripts-search/NASNet-space-search-by-GDAS-FRC.sh cifar10 1 -1 | ||||||
| ``` | ``` | ||||||
|  |  | ||||||
| **After searching**, if you want to re-train the searched architecture found by the above script, you can use the following script: | **After searching**, if you want to re-train the searched architecture found by the above script, you can use the following script: | ||||||
| @@ -52,7 +57,9 @@ Note that `gdas-searched` is a string to indicate the name of the saved dir and | |||||||
| The above script does not apply heavy augmentation to train the model, so the accuracy will be lower than the original paper. | The above script does not apply heavy augmentation to train the model, so the accuracy will be lower than the original paper. | ||||||
| If you want to change the default hyper-parameter for re-training, please have a look at `./scripts/retrain-searched-net.sh` and `configs/archs/NAS-*-none.config`. | If you want to change the default hyper-parameter for re-training, please have a look at `./scripts/retrain-searched-net.sh` and `configs/archs/NAS-*-none.config`. | ||||||
|  |  | ||||||
|  |  | ||||||
| ### Searching on a small search space (NAS-Bench-201) | ### Searching on a small search space (NAS-Bench-201) | ||||||
|  |  | ||||||
| The GDAS searching codes on a small search space: | The GDAS searching codes on a small search space: | ||||||
| ``` | ``` | ||||||
| CUDA_VISIBLE_DEVICES=0 bash ./scripts-search/algos/GDAS.sh cifar10 1 -1 | CUDA_VISIBLE_DEVICES=0 bash ./scripts-search/algos/GDAS.sh cifar10 1 -1 | ||||||
|   | |||||||
| @@ -4,7 +4,7 @@ | |||||||
| import torch | import torch | ||||||
| import torch.nn as nn | import torch.nn as nn | ||||||
|  |  | ||||||
| __all__ = ['OPS', 'ResNetBasicblock', 'SearchSpaceNames'] | __all__ = ['OPS', 'RAW_OP_CLASSES', 'ResNetBasicblock', 'SearchSpaceNames'] | ||||||
|  |  | ||||||
| OPS = { | OPS = { | ||||||
|   'none'         : lambda C_in, C_out, stride, affine, track_running_stats: Zero(C_in, C_out, stride), |   'none'         : lambda C_in, C_out, stride, affine, track_running_stats: Zero(C_in, C_out, stride), | ||||||
| @@ -175,7 +175,7 @@ class FactorizedReduce(nn.Module): | |||||||
|         self.convs.append(nn.Conv2d(C_in, C_outs[i], 1, stride=stride, padding=0, bias=not affine)) |         self.convs.append(nn.Conv2d(C_in, C_outs[i], 1, stride=stride, padding=0, bias=not affine)) | ||||||
|       self.pad = nn.ConstantPad2d((0, 1, 0, 1), 0) |       self.pad = nn.ConstantPad2d((0, 1, 0, 1), 0) | ||||||
|     elif stride == 1: |     elif stride == 1: | ||||||
|       self.conv = nn.Conv2d(C_in, C_out, 1, stride=stride, padding=0, bias=False) |       self.conv = nn.Conv2d(C_in, C_out, 1, stride=stride, padding=0, bias=not affine) | ||||||
|     else: |     else: | ||||||
|       raise ValueError('Invalid stride : {:}'.format(stride)) |       raise ValueError('Invalid stride : {:}'.format(stride)) | ||||||
|     self.bn = nn.BatchNorm2d(C_out, affine=affine, track_running_stats=track_running_stats) |     self.bn = nn.BatchNorm2d(C_out, affine=affine, track_running_stats=track_running_stats) | ||||||
| @@ -256,41 +256,44 @@ def drop_path(x, drop_prob): | |||||||
| # Searching for A Robust Neural Architecture in Four GPU Hours | # Searching for A Robust Neural Architecture in Four GPU Hours | ||||||
| class GDAS_Reduction_Cell(nn.Module): | class GDAS_Reduction_Cell(nn.Module): | ||||||
|  |  | ||||||
|   def __init__(self, C_prev_prev, C_prev, C, reduction_prev, multiplier, affine, track_running_stats): |   def __init__(self, C_prev_prev, C_prev, C, reduction_prev, affine, track_running_stats): | ||||||
|     super(GDAS_Reduction_Cell, self).__init__() |     super(GDAS_Reduction_Cell, self).__init__() | ||||||
|     if reduction_prev: |     if reduction_prev: | ||||||
|       self.preprocess0 = FactorizedReduce(C_prev_prev, C, 2, affine, track_running_stats) |       self.preprocess0 = FactorizedReduce(C_prev_prev, C, 2, affine, track_running_stats) | ||||||
|     else: |     else: | ||||||
|       self.preprocess0 = ReLUConvBN(C_prev_prev, C, 1, 1, 0, 1, affine, track_running_stats) |       self.preprocess0 = ReLUConvBN(C_prev_prev, C, 1, 1, 0, 1, affine, track_running_stats) | ||||||
|     self.preprocess1 = ReLUConvBN(C_prev, C, 1, 1, 0, 1, affine, track_running_stats) |     self.preprocess1 = ReLUConvBN(C_prev, C, 1, 1, 0, 1, affine, track_running_stats) | ||||||
|     self.multiplier  = multiplier |  | ||||||
|  |  | ||||||
|     self.reduction = True |     self.reduction = True | ||||||
|     self.ops1 = nn.ModuleList( |     self.ops1 = nn.ModuleList( | ||||||
|                   [nn.Sequential( |                   [nn.Sequential( | ||||||
|                       nn.ReLU(inplace=False), |                       nn.ReLU(inplace=False), | ||||||
|                       nn.Conv2d(C, C, (1, 3), stride=(1, 2), padding=(0, 1), groups=8, bias=False), |                       nn.Conv2d(C, C, (1, 3), stride=(1, 2), padding=(0, 1), groups=8, bias=not affine), | ||||||
|                       nn.Conv2d(C, C, (3, 1), stride=(2, 1), padding=(1, 0), groups=8, bias=False), |                       nn.Conv2d(C, C, (3, 1), stride=(2, 1), padding=(1, 0), groups=8, bias=not affine), | ||||||
|                       nn.BatchNorm2d(C, affine=True), |                       nn.BatchNorm2d(C, affine=affine, track_running_stats=track_running_stats), | ||||||
|                       nn.ReLU(inplace=False), |                       nn.ReLU(inplace=False), | ||||||
|                       nn.Conv2d(C, C, 1, stride=1, padding=0, bias=False), |                       nn.Conv2d(C, C, 1, stride=1, padding=0, bias=not affine), | ||||||
|                       nn.BatchNorm2d(C, affine=True)), |                       nn.BatchNorm2d(C, affine=affine, track_running_stats=track_running_stats)), | ||||||
|                    nn.Sequential( |                    nn.Sequential( | ||||||
|                       nn.ReLU(inplace=False), |                       nn.ReLU(inplace=False), | ||||||
|                       nn.Conv2d(C, C, (1, 3), stride=(1, 2), padding=(0, 1), groups=8, bias=False), |                       nn.Conv2d(C, C, (1, 3), stride=(1, 2), padding=(0, 1), groups=8, bias=not affine), | ||||||
|                       nn.Conv2d(C, C, (3, 1), stride=(2, 1), padding=(1, 0), groups=8, bias=False), |                       nn.Conv2d(C, C, (3, 1), stride=(2, 1), padding=(1, 0), groups=8, bias=not affine), | ||||||
|                       nn.BatchNorm2d(C, affine=True), |                       nn.BatchNorm2d(C, affine=affine, track_running_stats=track_running_stats), | ||||||
|                       nn.ReLU(inplace=False), |                       nn.ReLU(inplace=False), | ||||||
|                       nn.Conv2d(C, C, 1, stride=1, padding=0, bias=False), |                       nn.Conv2d(C, C, 1, stride=1, padding=0, bias=not affine), | ||||||
|                       nn.BatchNorm2d(C, affine=True))]) |                       nn.BatchNorm2d(C, affine=affine, track_running_stats=track_running_stats))]) | ||||||
|  |  | ||||||
|     self.ops2 = nn.ModuleList( |     self.ops2 = nn.ModuleList( | ||||||
|                   [nn.Sequential( |                   [nn.Sequential( | ||||||
|                       nn.MaxPool2d(3, stride=1, padding=1), |                       nn.MaxPool2d(3, stride=2, padding=1), | ||||||
|                       nn.BatchNorm2d(C, affine=True)), |                       nn.BatchNorm2d(C, affine=affine, track_running_stats=track_running_stats)), | ||||||
|                    nn.Sequential( |                    nn.Sequential( | ||||||
|                       nn.MaxPool2d(3, stride=2, padding=1), |                       nn.MaxPool2d(3, stride=2, padding=1), | ||||||
|                       nn.BatchNorm2d(C, affine=True))]) |                       nn.BatchNorm2d(C, affine=affine, track_running_stats=track_running_stats))]) | ||||||
|  |  | ||||||
|  |   @property | ||||||
|  |   def multiplier(self): | ||||||
|  |     return 4 | ||||||
|  |  | ||||||
|   def forward(self, s0, s1, drop_prob = -1): |   def forward(self, s0, s1, drop_prob = -1): | ||||||
|     s0 = self.preprocess0(s0) |     s0 = self.preprocess0(s0) | ||||||
| @@ -307,3 +310,10 @@ class GDAS_Reduction_Cell(nn.Module): | |||||||
|     if self.training and drop_prob > 0.: |     if self.training and drop_prob > 0.: | ||||||
|       X2, X3 = drop_path(X2, drop_prob), drop_path(X3, drop_prob) |       X2, X3 = drop_path(X2, drop_prob), drop_path(X3, drop_prob) | ||||||
|     return torch.cat([X0, X1, X2, X3], dim=1) |     return torch.cat([X0, X1, X2, X3], dim=1) | ||||||
|  |  | ||||||
|  |  | ||||||
|  | # To manage the useful classes in this file. | ||||||
|  | RAW_OP_CLASSES = { | ||||||
|  |   'gdas_reduction': GDAS_Reduction_Cell | ||||||
|  | } | ||||||
|  |  | ||||||
|   | |||||||
| @@ -11,6 +11,7 @@ from .generic_model         import GenericNAS201Model | |||||||
| from .genotypes             import Structure as CellStructure, architectures as CellArchitectures | from .genotypes             import Structure as CellStructure, architectures as CellArchitectures | ||||||
| # NASNet-based macro structure | # NASNet-based macro structure | ||||||
| from .search_model_gdas_nasnet import NASNetworkGDAS | from .search_model_gdas_nasnet import NASNetworkGDAS | ||||||
|  | from .search_model_gdas_frc_nasnet import NASNetworkGDAS_FRC | ||||||
| from .search_model_darts_nasnet import NASNetworkDARTS | from .search_model_darts_nasnet import NASNetworkDARTS | ||||||
|  |  | ||||||
|  |  | ||||||
| @@ -23,4 +24,5 @@ nas201_super_nets = {'DARTS-V1': TinyNetworkDarts, | |||||||
|                      "generic": GenericNAS201Model} |                      "generic": GenericNAS201Model} | ||||||
|  |  | ||||||
| nasnet_super_nets = {"GDAS": NASNetworkGDAS, | nasnet_super_nets = {"GDAS": NASNetworkGDAS, | ||||||
|  |                      "GDAS_FRC": NASNetworkGDAS_FRC, | ||||||
|                      "DARTS": NASNetworkDARTS} |                      "DARTS": NASNetworkDARTS} | ||||||
|   | |||||||
| @@ -163,6 +163,10 @@ class NASNetSearchCell(nn.Module): | |||||||
|     self.edge2index = {key:i for i, key in enumerate(self.edge_keys)} |     self.edge2index = {key:i for i, key in enumerate(self.edge_keys)} | ||||||
|     self.num_edges  = len(self.edges) |     self.num_edges  = len(self.edges) | ||||||
|  |  | ||||||
|  |   @property | ||||||
|  |   def multiplier(self): | ||||||
|  |     return self._multiplier | ||||||
|  |  | ||||||
|   def forward_gdas(self, s0, s1, weightss, indexs): |   def forward_gdas(self, s0, s1, weightss, indexs): | ||||||
|     s0 = self.preprocess0(s0) |     s0 = self.preprocess0(s0) | ||||||
|     s1 = self.preprocess1(s1) |     s1 = self.preprocess1(s1) | ||||||
|   | |||||||
							
								
								
									
										125
									
								
								lib/models/cell_searchs/search_model_gdas_frc_nasnet.py
									
									
									
									
									
										Normal file
									
								
							
							
						
						
									
										125
									
								
								lib/models/cell_searchs/search_model_gdas_frc_nasnet.py
									
									
									
									
									
										Normal file
									
								
							| @@ -0,0 +1,125 @@ | |||||||
|  | ########################################################################### | ||||||
|  | # Searching for A Robust Neural Architecture in Four GPU Hours, CVPR 2019 # | ||||||
|  | ########################################################################### | ||||||
|  | import torch | ||||||
|  | import torch.nn as nn | ||||||
|  | from copy import deepcopy | ||||||
|  | from models.cell_searchs.search_cells import NASNetSearchCell as SearchCell | ||||||
|  | from models.cell_operations import RAW_OP_CLASSES | ||||||
|  |  | ||||||
|  |  | ||||||
|  | # The macro structure is based on NASNet | ||||||
|  | class NASNetworkGDAS_FRC(nn.Module): | ||||||
|  |  | ||||||
|  |   def __init__(self, C, N, steps, multiplier, stem_multiplier, num_classes, search_space, affine, track_running_stats): | ||||||
|  |     super(NASNetworkGDAS_FRC, self).__init__() | ||||||
|  |     self._C        = C | ||||||
|  |     self._layerN   = N | ||||||
|  |     self._steps    = steps | ||||||
|  |     self._multiplier = multiplier | ||||||
|  |     self.stem = nn.Sequential( | ||||||
|  |                     nn.Conv2d(3, C*stem_multiplier, kernel_size=3, padding=1, bias=False), | ||||||
|  |                     nn.BatchNorm2d(C*stem_multiplier)) | ||||||
|  |    | ||||||
|  |     # config for each layer | ||||||
|  |     layer_channels   = [C    ] * N + [C*2 ] + [C*2  ] * (N-1) + [C*4 ] + [C*4  ] * (N-1) | ||||||
|  |     layer_reductions = [False] * N + [True] + [False] * (N-1) + [True] + [False] * (N-1) | ||||||
|  |  | ||||||
|  |     num_edge, edge2index = None, None | ||||||
|  |     C_prev_prev, C_prev, C_curr, reduction_prev = C*stem_multiplier, C*stem_multiplier, C, False | ||||||
|  |  | ||||||
|  |     self.cells = nn.ModuleList() | ||||||
|  |     for index, (C_curr, reduction) in enumerate(zip(layer_channels, layer_reductions)): | ||||||
|  |       if reduction: | ||||||
|  |         cell = RAW_OP_CLASSES['gdas_reduction'](C_prev_prev, C_prev, C_curr, reduction_prev, affine, track_running_stats) | ||||||
|  |       else: | ||||||
|  |         cell = SearchCell(search_space, steps, multiplier, C_prev_prev, C_prev, C_curr, reduction, reduction_prev, affine, track_running_stats) | ||||||
|  |       if num_edge is None: num_edge, edge2index = cell.num_edges, cell.edge2index | ||||||
|  |       else: assert reduction or num_edge == cell.num_edges and edge2index == cell.edge2index, 'invalid {:} vs. {:}.'.format(num_edge, cell.num_edges) | ||||||
|  |       self.cells.append( cell ) | ||||||
|  |       C_prev_prev, C_prev, reduction_prev = C_prev, cell.multiplier * C_curr, reduction | ||||||
|  |     self.op_names   = deepcopy( search_space ) | ||||||
|  |     self._Layer     = len(self.cells) | ||||||
|  |     self.edge2index = edge2index | ||||||
|  |     self.lastact    = nn.Sequential(nn.BatchNorm2d(C_prev), nn.ReLU(inplace=True)) | ||||||
|  |     self.global_pooling = nn.AdaptiveAvgPool2d(1) | ||||||
|  |     self.classifier = nn.Linear(C_prev, num_classes) | ||||||
|  |     self.arch_parameters = nn.Parameter( 1e-3*torch.randn(num_edge, len(search_space)) ) | ||||||
|  |     self.tau        = 10 | ||||||
|  |  | ||||||
|  |   def get_weights(self): | ||||||
|  |     xlist = list( self.stem.parameters() ) + list( self.cells.parameters() ) | ||||||
|  |     xlist+= list( self.lastact.parameters() ) + list( self.global_pooling.parameters() ) | ||||||
|  |     xlist+= list( self.classifier.parameters() ) | ||||||
|  |     return xlist | ||||||
|  |  | ||||||
|  |   def set_tau(self, tau): | ||||||
|  |     self.tau = tau | ||||||
|  |  | ||||||
|  |   def get_tau(self): | ||||||
|  |     return self.tau | ||||||
|  |  | ||||||
|  |   def get_alphas(self): | ||||||
|  |     return [self.arch_parameters] | ||||||
|  |  | ||||||
|  |   def show_alphas(self): | ||||||
|  |     with torch.no_grad(): | ||||||
|  |       A = 'arch-normal-parameters :\n{:}'.format(nn.functional.softmax(self.arch_parameters, dim=-1).cpu()) | ||||||
|  |     return '{:}'.format(A) | ||||||
|  |  | ||||||
|  |   def get_message(self): | ||||||
|  |     string = self.extra_repr() | ||||||
|  |     for i, cell in enumerate(self.cells): | ||||||
|  |       string += '\n {:02d}/{:02d} :: {:}'.format(i, len(self.cells), cell.extra_repr()) | ||||||
|  |     return string | ||||||
|  |  | ||||||
|  |   def extra_repr(self): | ||||||
|  |     return ('{name}(C={_C}, N={_layerN}, steps={_steps}, multiplier={_multiplier}, L={_Layer})'.format(name=self.__class__.__name__, **self.__dict__)) | ||||||
|  |  | ||||||
|  |   def genotype(self): | ||||||
|  |     def _parse(weights): | ||||||
|  |       gene = [] | ||||||
|  |       for i in range(self._steps): | ||||||
|  |         edges = [] | ||||||
|  |         for j in range(2+i): | ||||||
|  |           node_str = '{:}<-{:}'.format(i, j) | ||||||
|  |           ws = weights[ self.edge2index[node_str] ] | ||||||
|  |           for k, op_name in enumerate(self.op_names): | ||||||
|  |             if op_name == 'none': continue | ||||||
|  |             edges.append( (op_name, j, ws[k]) ) | ||||||
|  |         edges = sorted(edges, key=lambda x: -x[-1]) | ||||||
|  |         selected_edges = edges[:2] | ||||||
|  |         gene.append( tuple(selected_edges) ) | ||||||
|  |       return gene | ||||||
|  |     with torch.no_grad(): | ||||||
|  |       gene_normal = _parse(torch.softmax(self.arch_parameters, dim=-1).cpu().numpy()) | ||||||
|  |     return {'normal': gene_normal, 'normal_concat': list(range(2+self._steps-self._multiplier, self._steps+2))} | ||||||
|  |  | ||||||
|  |   def forward(self, inputs): | ||||||
|  |     def get_gumbel_prob(xins): | ||||||
|  |       while True: | ||||||
|  |         gumbels = -torch.empty_like(xins).exponential_().log() | ||||||
|  |         logits  = (xins.log_softmax(dim=1) + gumbels) / self.tau | ||||||
|  |         probs   = nn.functional.softmax(logits, dim=1) | ||||||
|  |         index   = probs.max(-1, keepdim=True)[1] | ||||||
|  |         one_h   = torch.zeros_like(logits).scatter_(-1, index, 1.0) | ||||||
|  |         hardwts = one_h - probs.detach() + probs | ||||||
|  |         if (torch.isinf(gumbels).any()) or (torch.isinf(probs).any()) or (torch.isnan(probs).any()): | ||||||
|  |           continue | ||||||
|  |         else: break | ||||||
|  |       return hardwts, index | ||||||
|  |  | ||||||
|  |     hardwts, index = get_gumbel_prob(self.arch_parameters) | ||||||
|  |  | ||||||
|  |     s0 = s1 = self.stem(inputs) | ||||||
|  |     for i, cell in enumerate(self.cells): | ||||||
|  |       if cell.reduction: | ||||||
|  |         s0, s1 = s1, cell(s0, s1) | ||||||
|  |       else:  | ||||||
|  |         s0, s1 = s1, cell.forward_gdas(s0, s1, hardwts, index) | ||||||
|  |     out = self.lastact(s1) | ||||||
|  |     out = self.global_pooling( out ) | ||||||
|  |     out = out.view(out.size(0), -1) | ||||||
|  |     logits = self.classifier(out) | ||||||
|  |  | ||||||
|  |     return out, logits | ||||||
							
								
								
									
										38
									
								
								scripts-search/NASNet-space-search-by-GDAS-FRC.sh
									
									
									
									
									
										Normal file
									
								
							
							
						
						
									
										38
									
								
								scripts-search/NASNet-space-search-by-GDAS-FRC.sh
									
									
									
									
									
										Normal file
									
								
							| @@ -0,0 +1,38 @@ | |||||||
|  | #!/bin/bash | ||||||
|  | # bash ./scripts-search/NASNet-space-search-by-GDAS-FRC.sh cifar10 1 -1 | ||||||
|  | echo script name: $0 | ||||||
|  | echo $# arguments | ||||||
|  | if [ "$#" -ne 3 ] ;then | ||||||
|  |   echo "Input illegal number of parameters " $# | ||||||
|  |   echo "Need 3 parameters for dataset, track_running_stats, and seed" | ||||||
|  |   exit 1 | ||||||
|  | fi | ||||||
|  | if [ "$TORCH_HOME" = "" ]; then | ||||||
|  |   echo "Must set TORCH_HOME envoriment variable for data dir saving" | ||||||
|  |   exit 1 | ||||||
|  | else | ||||||
|  |   echo "TORCH_HOME : $TORCH_HOME" | ||||||
|  | fi | ||||||
|  |  | ||||||
|  | dataset=$1 | ||||||
|  | track_running_stats=$2 | ||||||
|  | seed=$3 | ||||||
|  | space=darts | ||||||
|  |  | ||||||
|  | if [ "$dataset" == "cifar10" ] || [ "$dataset" == "cifar100" ]; then | ||||||
|  |   data_path="$TORCH_HOME/cifar.python" | ||||||
|  | else | ||||||
|  |   data_path="$TORCH_HOME/cifar.python/ImageNet16" | ||||||
|  | fi | ||||||
|  |  | ||||||
|  | save_dir=./output/search-cell-${space}/GDAS-${dataset}-BN${track_running_stats} | ||||||
|  |  | ||||||
|  | OMP_NUM_THREADS=4 python ./exps/algos/GDAS.py \ | ||||||
|  | 	--save_dir ${save_dir} \ | ||||||
|  | 	--dataset ${dataset} --data_path ${data_path} \ | ||||||
|  | 	--search_space_name ${space} \ | ||||||
|  | 	--config_path  configs/search-opts/GDAS-NASNet-CIFAR.config \ | ||||||
|  | 	--model_config configs/search-archs/GDASFRC-NASNet-CIFAR.config \ | ||||||
|  | 	--tau_max 10 --tau_min 0.1 --track_running_stats ${track_running_stats} \ | ||||||
|  | 	--arch_learning_rate 0.0003 --arch_weight_decay 0.001 \ | ||||||
|  | 	--workers 4 --print_freq 200 --rand_seed ${seed} | ||||||
		Reference in New Issue
	
	Block a user