--------- [![MIT licensed](https://img.shields.io/badge/license-MIT-brightgreen.svg)](../LICENSE.md) 自动深度学习库 (AutoDL-Projects) 是一个开源的,轻量级的,功能强大的项目。 该项目实现了多种网络结构搜索(NAS)和超参数优化(HPO)算法。 **谁应该考虑使用AutoDL-Projects** - 想尝试不同AutoDL算法的初学者 - 想调研AutoDL在特定问题上的有效性的工程师 - 想轻松实现和实验新AutoDL算法的研究员 **为什么我们要用AutoDL-Projects** - 最简化的python依赖库 - 所有算法都在一个代码库下 - 积极地维护 ## AutoDL-Projects 能力简述 目前,该项目提供了下列算法和以及对应的运行脚本。请点击每个算法对应的链接看他们的细节描述。
Type ABBRV Algorithms Description
NAS TAS Network Pruning via Transformable Architecture Search NeurIPS-2019-TAS.md
DARTS DARTS: Differentiable Architecture Search ICLR-2019-DARTS.md
GDAS Searching for A Robust Neural Architecture in Four GPU Hours CVPR-2019-GDAS.md
SETN One-Shot Neural Architecture Search via Self-Evaluated Template Network ICCV-2019-SETN.md
NAS-Bench-201 NAS-Bench-201: Extending the Scope of Reproducible Neural Architecture Search NAS-Bench-201.md
NATS-Bench NATS-Bench: Benchmarking NAS Algorithms for Architecture Topology and Size NATS-Bench.md
... ENAS / REA / REINFORCE / BOHB Please check the original papers. NAS-Bench-201.md NATS-Bench.md
HPO HPO-CG Hyperparameter optimization with approximate gradient coming soon
Basic ResNet Deep Learning-based Image Classification BASELINE.md
## 准备工作 请使用`3.6`以上的`Python`,更多的Python包参见[requirements.txt](requirements.txt). 请下载并且解压缩`CIFAR`和`ImageNet`到`$TORCH_HOME`. ## 引用 如果您发现该项目对您的科研或工程有帮助,请考虑引用下列的某些文献: ``` @inproceedings{dong2021autohas, title = {{AutoHAS}: Efficient Hyperparameter and Architecture Search}, author = {Dong, Xuanyi and Tan, Mingxing and Yu, Adams Wei and Peng, Daiyi and Gabrys, Bogdan and Le, Quoc V}, booktitle = {2nd Workshop on Neural Architecture Search at International Conference on Learning Representations (ICLR)}, year = {2021} } @article{dong2021nats, title = {{NATS-Bench}: Benchmarking NAS Algorithms for Architecture Topology and Size}, author = {Dong, Xuanyi and Liu, Lu and Musial, Katarzyna and Gabrys, Bogdan}, doi = {10.1109/TPAMI.2021.3054824}, journal = {IEEE Transactions on Pattern Analysis and Machine Intelligence (TPAMI)}, year = {2021}, note = {\mbox{doi}:\url{10.1109/TPAMI.2021.3054824}} } @inproceedings{dong2020nasbench201, title = {{NAS-Bench-201}: Extending the Scope of Reproducible Neural Architecture Search}, author = {Dong, Xuanyi and Yang, Yi}, booktitle = {International Conference on Learning Representations (ICLR)}, url = {https://openreview.net/forum?id=HJxyZkBKDr}, year = {2020} } @inproceedings{dong2019tas, title = {Network Pruning via Transformable Architecture Search}, author = {Dong, Xuanyi and Yang, Yi}, booktitle = {Neural Information Processing Systems (NeurIPS)}, year = {2019} pages = {760--771}, } @inproceedings{dong2019one, title = {One-Shot Neural Architecture Search via Self-Evaluated Template Network}, author = {Dong, Xuanyi and Yang, Yi}, booktitle = {Proceedings of the IEEE International Conference on Computer Vision (ICCV)}, pages = {3681--3690}, year = {2019} } @inproceedings{dong2019search, title = {Searching for A Robust Neural Architecture in Four GPU Hours}, author = {Dong, Xuanyi and Yang, Yi}, booktitle = {Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR)}, pages = {1761--1770}, year = {2019} } ``` # 其他 如果你想要给这份代码库做贡献,请看[CONTRIBUTING.md](../.github/CONTRIBUTING.md)。 此外,使用规范请参考[CODE-OF-CONDUCT.md](../.github/CODE-OF-CONDUCT.md)。 # 许可证 The entire codebase is under [MIT license](../LICENSE.md)