##################################################### # Copyright (c) Xuanyi Dong [GitHub D-X-Y], 2020.01 # ################################################################################################ # python exps/NAS-Bench-201/show-best.py --api_path $HOME/.torch/NAS-Bench-201-v1_0-e61699.pth # ################################################################################################ import argparse from pathlib import Path from nas_201_api import NASBench201API as API if __name__ == "__main__": parser = argparse.ArgumentParser("Analysis of NAS-Bench-201") parser.add_argument( "--api_path", type=str, default=None, help="The path to the NAS-Bench-201 benchmark file.", ) args = parser.parse_args() meta_file = Path(args.api_path) assert meta_file.exists(), "invalid path for api : {:}".format(meta_file) api = API(str(meta_file)) # This will show the results of the best architecture based on the validation set of each dataset. arch_index, accuracy = api.find_best("cifar10-valid", "x-valid", None, None, False) print("FOR CIFAR-010, using the hyper-parameters with 200 training epochs :::") print("arch-index={:5d}, arch={:}".format(arch_index, api.arch(arch_index))) api.show(arch_index) print("") arch_index, accuracy = api.find_best("cifar100", "x-valid", None, None, False) print("FOR CIFAR-100, using the hyper-parameters with 200 training epochs :::") print("arch-index={:5d}, arch={:}".format(arch_index, api.arch(arch_index))) api.show(arch_index) print("") arch_index, accuracy = api.find_best("ImageNet16-120", "x-valid", None, None, False) print("FOR ImageNet16-120, using the hyper-parameters with 200 training epochs :::") print("arch-index={:5d}, arch={:}".format(arch_index, api.arch(arch_index))) api.show(arch_index) print("")