################################################## # Copyright (c) Xuanyi Dong [GitHub D-X-Y], 2020 # ############################################################################## # Random Search for Hyper-Parameter Optimization, JMLR 2012 ################## ############################################################################## # python ./exps/NATS-algos/random_wo_share.py --dataset cifar10 --search_space tss # python ./exps/NATS-algos/random_wo_share.py --dataset cifar100 --search_space tss # python ./exps/NATS-algos/random_wo_share.py --dataset ImageNet16-120 --search_space tss ############################################################################## import os, sys, time, glob, random, argparse import numpy as np, collections from copy import deepcopy import torch import torch.nn as nn from xautodl.config_utils import load_config, dict2config, configure2str from xautodl.datasets import get_datasets, SearchDataset from xautodl.procedures import ( prepare_seed, prepare_logger, save_checkpoint, copy_checkpoint, get_optim_scheduler, ) from xautodl.utils import get_model_infos, obtain_accuracy from xautodl.log_utils import AverageMeter, time_string, convert_secs2time from xautodl.models import CellStructure, get_search_spaces from nats_bench import create def random_topology_func(op_names, max_nodes=4): # Return a random architecture def random_architecture(): genotypes = [] for i in range(1, max_nodes): xlist = [] for j in range(i): node_str = "{:}<-{:}".format(i, j) op_name = random.choice(op_names) xlist.append((op_name, j)) genotypes.append(tuple(xlist)) return CellStructure(genotypes) return random_architecture def random_size_func(info): # Return a random architecture def random_architecture(): channels = [] for i in range(info["numbers"]): channels.append(str(random.choice(info["candidates"]))) return ":".join(channels) return random_architecture def main(xargs, api): torch.set_num_threads(4) prepare_seed(xargs.rand_seed) logger = prepare_logger(args) logger.log("{:} use api : {:}".format(time_string(), api)) api.reset_time() search_space = get_search_spaces(xargs.search_space, "nats-bench") if xargs.search_space == "tss": random_arch = random_topology_func(search_space) else: random_arch = random_size_func(search_space) best_arch, best_acc, total_time_cost, history = None, -1, [], [] current_best_index = [] while len(total_time_cost) == 0 or total_time_cost[-1] < xargs.time_budget: arch = random_arch() accuracy, _, _, total_cost = api.simulate_train_eval( arch, xargs.dataset, hp="12" ) total_time_cost.append(total_cost) history.append(arch) if best_arch is None or best_acc < accuracy: best_acc, best_arch = accuracy, arch logger.log( "[{:03d}] : {:} : accuracy = {:.2f}%".format(len(history), arch, accuracy) ) current_best_index.append(api.query_index_by_arch(best_arch)) logger.log( "{:} best arch is {:}, accuracy = {:.2f}%, visit {:} archs with {:.1f} s.".format( time_string(), best_arch, best_acc, len(history), total_time_cost[-1] ) ) info = api.query_info_str_by_arch( best_arch, "200" if xargs.search_space == "tss" else "90" ) logger.log("{:}".format(info)) logger.log("-" * 100) logger.close() return logger.log_dir, current_best_index, total_time_cost if __name__ == "__main__": parser = argparse.ArgumentParser("Random NAS") parser.add_argument( "--dataset", type=str, choices=["cifar10", "cifar100", "ImageNet16-120"], help="Choose between Cifar10/100 and ImageNet-16.", ) parser.add_argument( "--search_space", type=str, choices=["tss", "sss"], help="Choose the search space.", ) parser.add_argument( "--time_budget", type=int, default=20000, help="The total time cost budge for searching (in seconds).", ) parser.add_argument( "--loops_if_rand", type=int, default=500, help="The total runs for evaluation." ) # log parser.add_argument( "--save_dir", type=str, default="./output/search", help="Folder to save checkpoints and log.", ) parser.add_argument("--rand_seed", type=int, default=-1, help="manual seed") args = parser.parse_args() api = create(None, args.search_space, fast_mode=True, verbose=False) args.save_dir = os.path.join( "{:}-{:}".format(args.save_dir, args.search_space), "{:}-T{:}".format(args.dataset, args.time_budget), "RANDOM", ) print("save-dir : {:}".format(args.save_dir)) if args.rand_seed < 0: save_dir, all_info = None, collections.OrderedDict() for i in range(args.loops_if_rand): print("{:} : {:03d}/{:03d}".format(time_string(), i, args.loops_if_rand)) args.rand_seed = random.randint(1, 100000) save_dir, all_archs, all_total_times = main(args, api) all_info[i] = {"all_archs": all_archs, "all_total_times": all_total_times} save_path = save_dir / "results.pth" print("save into {:}".format(save_path)) torch.save(all_info, save_path) else: main(args, api)