############################################################### # NAS-Bench-201, ICLR 2020 (https://arxiv.org/abs/2001.00326) # ############################################################### # Copyright (c) Xuanyi Dong [GitHub D-X-Y], 2020.06 # ############################################################### # Usage: python exps/experimental/vis-nats-bench-algos.py --search_space tss # Usage: python exps/experimental/vis-nats-bench-algos.py --search_space sss ############################################################### import os, gc, sys, time, torch, argparse import numpy as np from typing import List, Text, Dict, Any from shutil import copyfile from collections import defaultdict, OrderedDict from copy import deepcopy from pathlib import Path import matplotlib import seaborn as sns matplotlib.use("agg") import matplotlib.pyplot as plt import matplotlib.ticker as ticker lib_dir = (Path(__file__).parent / ".." / ".." / "lib").resolve() if str(lib_dir) not in sys.path: sys.path.insert(0, str(lib_dir)) from config_utils import dict2config, load_config from nats_bench import create from log_utils import time_string def fetch_data(root_dir="./output/search", search_space="tss", dataset=None): ss_dir = "{:}-{:}".format(root_dir, search_space) alg2name, alg2path = OrderedDict(), OrderedDict() alg2name["REA"] = "R-EA-SS3" alg2name["REINFORCE"] = "REINFORCE-0.01" alg2name["RANDOM"] = "RANDOM" alg2name["BOHB"] = "BOHB" for alg, name in alg2name.items(): alg2path[alg] = os.path.join(ss_dir, dataset, name, "results.pth") assert os.path.isfile(alg2path[alg]), "invalid path : {:}".format(alg2path[alg]) alg2data = OrderedDict() for alg, path in alg2path.items(): data = torch.load(path) for index, info in data.items(): info["time_w_arch"] = [ (x, y) for x, y in zip(info["all_total_times"], info["all_archs"]) ] for j, arch in enumerate(info["all_archs"]): assert arch != -1, "invalid arch from {:} {:} {:} ({:}, {:})".format( alg, search_space, dataset, index, j ) alg2data[alg] = data return alg2data def query_performance(api, data, dataset, ticket): results, is_size_space = [], api.search_space_name == "size" for i, info in data.items(): time_w_arch = sorted(info["time_w_arch"], key=lambda x: abs(x[0] - ticket)) time_a, arch_a = time_w_arch[0] time_b, arch_b = time_w_arch[1] info_a = api.get_more_info( arch_a, dataset=dataset, hp=90 if is_size_space else 200, is_random=False ) info_b = api.get_more_info( arch_b, dataset=dataset, hp=90 if is_size_space else 200, is_random=False ) accuracy_a, accuracy_b = info_a["test-accuracy"], info_b["test-accuracy"] interplate = (time_b - ticket) / (time_b - time_a) * accuracy_a + ( ticket - time_a ) / (time_b - time_a) * accuracy_b results.append(interplate) return sum(results) / len(results) y_min_s = { ("cifar10", "tss"): 90, ("cifar10", "sss"): 92, ("cifar100", "tss"): 65, ("cifar100", "sss"): 65, ("ImageNet16-120", "tss"): 36, ("ImageNet16-120", "sss"): 40, } y_max_s = { ("cifar10", "tss"): 94.5, ("cifar10", "sss"): 93.3, ("cifar100", "tss"): 72, ("cifar100", "sss"): 70, ("ImageNet16-120", "tss"): 44, ("ImageNet16-120", "sss"): 46, } name2label = { "cifar10": "CIFAR-10", "cifar100": "CIFAR-100", "ImageNet16-120": "ImageNet-16-120", } def visualize_curve(api, vis_save_dir, search_space, max_time): vis_save_dir = vis_save_dir.resolve() vis_save_dir.mkdir(parents=True, exist_ok=True) dpi, width, height = 250, 5200, 1400 figsize = width / float(dpi), height / float(dpi) LabelSize, LegendFontsize = 16, 16 def sub_plot_fn(ax, dataset): alg2data = fetch_data(search_space=search_space, dataset=dataset) alg2accuracies = OrderedDict() total_tickets = 150 time_tickets = [ float(i) / total_tickets * max_time for i in range(total_tickets) ] colors = ["b", "g", "c", "m", "y"] ax.set_xlim(0, 200) ax.set_ylim(y_min_s[(dataset, search_space)], y_max_s[(dataset, search_space)]) for idx, (alg, data) in enumerate(alg2data.items()): print("plot alg : {:}".format(alg)) accuracies = [] for ticket in time_tickets: accuracy = query_performance(api, data, dataset, ticket) accuracies.append(accuracy) alg2accuracies[alg] = accuracies ax.plot( [x / 100 for x in time_tickets], accuracies, c=colors[idx], label="{:}".format(alg), ) ax.set_xlabel("Estimated wall-clock time (1e2 seconds)", fontsize=LabelSize) ax.set_ylabel( "Test accuracy on {:}".format(name2label[dataset]), fontsize=LabelSize ) ax.set_title( "Searching results on {:}".format(name2label[dataset]), fontsize=LabelSize + 4, ) ax.legend(loc=4, fontsize=LegendFontsize) fig, axs = plt.subplots(1, 3, figsize=figsize) datasets = ["cifar10", "cifar100", "ImageNet16-120"] for dataset, ax in zip(datasets, axs): sub_plot_fn(ax, dataset) print("sub-plot {:} on {:} done.".format(dataset, search_space)) save_path = (vis_save_dir / "{:}-curve.png".format(search_space)).resolve() fig.savefig(save_path, dpi=dpi, bbox_inches="tight", format="png") print("{:} save into {:}".format(time_string(), save_path)) plt.close("all") if __name__ == "__main__": parser = argparse.ArgumentParser( description="NAS-Bench-X", formatter_class=argparse.ArgumentDefaultsHelpFormatter, ) parser.add_argument( "--save_dir", type=str, default="output/vis-nas-bench/nas-algos", help="Folder to save checkpoints and log.", ) parser.add_argument( "--search_space", type=str, choices=["tss", "sss"], help="Choose the search space.", ) parser.add_argument( "--max_time", type=float, default=20000, help="The maximum time budget." ) args = parser.parse_args() save_dir = Path(args.save_dir) api = create(None, args.search_space, verbose=False) visualize_curve(api, save_dir, args.search_space, args.max_time)