##################################################### # Copyright (c) Xuanyi Dong [GitHub D-X-Y], 2019.01 # ##################################################### import sys, time, torch, random, argparse from PIL import ImageFile ImageFile.LOAD_TRUNCATED_IMAGES = True from copy import deepcopy from pathlib import Path lib_dir = (Path(__file__).parent / ".." / "lib").resolve() if str(lib_dir) not in sys.path: sys.path.insert(0, str(lib_dir)) from config_utils import load_config, obtain_basic_args as obtain_args from procedures import prepare_seed, prepare_logger, save_checkpoint, copy_checkpoint from procedures import get_optim_scheduler, get_procedures from datasets import get_datasets from models import obtain_model from nas_infer_model import obtain_nas_infer_model from utils import get_model_infos from log_utils import AverageMeter, time_string, convert_secs2time def main(args): assert torch.cuda.is_available(), "CUDA is not available." torch.backends.cudnn.enabled = True torch.backends.cudnn.benchmark = True # torch.backends.cudnn.deterministic = True torch.set_num_threads(args.workers) prepare_seed(args.rand_seed) logger = prepare_logger(args) train_data, valid_data, xshape, class_num = get_datasets( args.dataset, args.data_path, args.cutout_length ) train_loader = torch.utils.data.DataLoader( train_data, batch_size=args.batch_size, shuffle=True, num_workers=args.workers, pin_memory=True, ) valid_loader = torch.utils.data.DataLoader( valid_data, batch_size=args.batch_size, shuffle=False, num_workers=args.workers, pin_memory=True, ) # get configures model_config = load_config(args.model_config, {"class_num": class_num}, logger) optim_config = load_config(args.optim_config, {"class_num": class_num}, logger) if args.model_source == "normal": base_model = obtain_model(model_config) elif args.model_source == "nas": base_model = obtain_nas_infer_model(model_config, args.extra_model_path) elif args.model_source == "autodl-searched": base_model = obtain_model(model_config, args.extra_model_path) else: raise ValueError("invalid model-source : {:}".format(args.model_source)) flop, param = get_model_infos(base_model, xshape) logger.log("model ====>>>>:\n{:}".format(base_model)) logger.log("model information : {:}".format(base_model.get_message())) logger.log("-" * 50) logger.log( "Params={:.2f} MB, FLOPs={:.2f} M ... = {:.2f} G".format( param, flop, flop / 1e3 ) ) logger.log("-" * 50) logger.log("train_data : {:}".format(train_data)) logger.log("valid_data : {:}".format(valid_data)) optimizer, scheduler, criterion = get_optim_scheduler( base_model.parameters(), optim_config ) logger.log("optimizer : {:}".format(optimizer)) logger.log("scheduler : {:}".format(scheduler)) logger.log("criterion : {:}".format(criterion)) last_info, model_base_path, model_best_path = ( logger.path("info"), logger.path("model"), logger.path("best"), ) network, criterion = torch.nn.DataParallel(base_model).cuda(), criterion.cuda() if last_info.exists(): # automatically resume from previous checkpoint logger.log( "=> loading checkpoint of the last-info '{:}' start".format(last_info) ) last_infox = torch.load(last_info) start_epoch = last_infox["epoch"] + 1 last_checkpoint_path = last_infox["last_checkpoint"] if not last_checkpoint_path.exists(): logger.log( "Does not find {:}, try another path".format(last_checkpoint_path) ) last_checkpoint_path = ( last_info.parent / last_checkpoint_path.parent.name / last_checkpoint_path.name ) checkpoint = torch.load(last_checkpoint_path) base_model.load_state_dict(checkpoint["base-model"]) scheduler.load_state_dict(checkpoint["scheduler"]) optimizer.load_state_dict(checkpoint["optimizer"]) valid_accuracies = checkpoint["valid_accuracies"] max_bytes = checkpoint["max_bytes"] logger.log( "=> loading checkpoint of the last-info '{:}' start with {:}-th epoch.".format( last_info, start_epoch ) ) elif args.resume is not None: assert Path(args.resume).exists(), "Can not find the resume file : {:}".format( args.resume ) checkpoint = torch.load(args.resume) start_epoch = checkpoint["epoch"] + 1 base_model.load_state_dict(checkpoint["base-model"]) scheduler.load_state_dict(checkpoint["scheduler"]) optimizer.load_state_dict(checkpoint["optimizer"]) valid_accuracies = checkpoint["valid_accuracies"] max_bytes = checkpoint["max_bytes"] logger.log( "=> loading checkpoint from '{:}' start with {:}-th epoch.".format( args.resume, start_epoch ) ) elif args.init_model is not None: assert Path( args.init_model ).exists(), "Can not find the initialization file : {:}".format(args.init_model) checkpoint = torch.load(args.init_model) base_model.load_state_dict(checkpoint["base-model"]) start_epoch, valid_accuracies, max_bytes = 0, {"best": -1}, {} logger.log("=> initialize the model from {:}".format(args.init_model)) else: logger.log("=> do not find the last-info file : {:}".format(last_info)) start_epoch, valid_accuracies, max_bytes = 0, {"best": -1}, {} train_func, valid_func = get_procedures(args.procedure) total_epoch = optim_config.epochs + optim_config.warmup # Main Training and Evaluation Loop start_time = time.time() epoch_time = AverageMeter() for epoch in range(start_epoch, total_epoch): scheduler.update(epoch, 0.0) need_time = "Time Left: {:}".format( convert_secs2time(epoch_time.avg * (total_epoch - epoch), True) ) epoch_str = "epoch={:03d}/{:03d}".format(epoch, total_epoch) LRs = scheduler.get_lr() find_best = False # set-up drop-out ratio if hasattr(base_model, "update_drop_path"): base_model.update_drop_path( model_config.drop_path_prob * epoch / total_epoch ) logger.log( "\n***{:s}*** start {:s} {:s}, LR=[{:.6f} ~ {:.6f}], scheduler={:}".format( time_string(), epoch_str, need_time, min(LRs), max(LRs), scheduler ) ) # train for one epoch train_loss, train_acc1, train_acc5 = train_func( train_loader, network, criterion, scheduler, optimizer, optim_config, epoch_str, args.print_freq, logger, ) # log the results logger.log( "***{:s}*** TRAIN [{:}] loss = {:.6f}, accuracy-1 = {:.2f}, accuracy-5 = {:.2f}".format( time_string(), epoch_str, train_loss, train_acc1, train_acc5 ) ) # evaluate the performance if (epoch % args.eval_frequency == 0) or (epoch + 1 == total_epoch): logger.log("-" * 150) valid_loss, valid_acc1, valid_acc5 = valid_func( valid_loader, network, criterion, optim_config, epoch_str, args.print_freq_eval, logger, ) valid_accuracies[epoch] = valid_acc1 logger.log( "***{:s}*** VALID [{:}] loss = {:.6f}, accuracy@1 = {:.2f}, accuracy@5 = {:.2f} | Best-Valid-Acc@1={:.2f}, Error@1={:.2f}".format( time_string(), epoch_str, valid_loss, valid_acc1, valid_acc5, valid_accuracies["best"], 100 - valid_accuracies["best"], ) ) if valid_acc1 > valid_accuracies["best"]: valid_accuracies["best"] = valid_acc1 find_best = True logger.log( "Currently, the best validation accuracy found at {:03d}-epoch :: acc@1={:.2f}, acc@5={:.2f}, error@1={:.2f}, error@5={:.2f}, save into {:}.".format( epoch, valid_acc1, valid_acc5, 100 - valid_acc1, 100 - valid_acc5, model_best_path, ) ) num_bytes = ( torch.cuda.max_memory_cached(next(network.parameters()).device) * 1.0 ) logger.log( "[GPU-Memory-Usage on {:} is {:} bytes, {:.2f} KB, {:.2f} MB, {:.2f} GB.]".format( next(network.parameters()).device, int(num_bytes), num_bytes / 1e3, num_bytes / 1e6, num_bytes / 1e9, ) ) max_bytes[epoch] = num_bytes if epoch % 10 == 0: torch.cuda.empty_cache() # save checkpoint save_path = save_checkpoint( { "epoch": epoch, "args": deepcopy(args), "max_bytes": deepcopy(max_bytes), "FLOP": flop, "PARAM": param, "valid_accuracies": deepcopy(valid_accuracies), "model-config": model_config._asdict(), "optim-config": optim_config._asdict(), "base-model": base_model.state_dict(), "scheduler": scheduler.state_dict(), "optimizer": optimizer.state_dict(), }, model_base_path, logger, ) if find_best: copy_checkpoint(model_base_path, model_best_path, logger) last_info = save_checkpoint( { "epoch": epoch, "args": deepcopy(args), "last_checkpoint": save_path, }, logger.path("info"), logger, ) # measure elapsed time epoch_time.update(time.time() - start_time) start_time = time.time() logger.log("\n" + "-" * 200) logger.log( "Finish training/validation in {:} with Max-GPU-Memory of {:.2f} MB, and save final checkpoint into {:}".format( convert_secs2time(epoch_time.sum, True), max(v for k, v in max_bytes.items()) / 1e6, logger.path("info"), ) ) logger.log("-" * 200 + "\n") logger.close() if __name__ == "__main__": args = obtain_args() main(args)