##################################################
# Copyright (c) Xuanyi Dong [GitHub D-X-Y], 2020 #
#####################################################################################################
# modified from https://github.com/pytorch/examples/blob/master/reinforcement_learning/reinforce.py #
#####################################################################################################
# python ./exps/NATS-algos/reinforce.py --dataset cifar10 --search_space tss --learning_rate 0.01 
# python ./exps/NATS-algos/reinforce.py --dataset cifar100 --search_space tss --learning_rate 0.01 
# python ./exps/NATS-algos/reinforce.py --dataset ImageNet16-120 --search_space tss --learning_rate 0.01 
# python ./exps/NATS-algos/reinforce.py --dataset cifar10 --search_space sss --learning_rate 0.01 
# python ./exps/NATS-algos/reinforce.py --dataset cifar100 --search_space sss --learning_rate 0.01 
# python ./exps/NATS-algos/reinforce.py --dataset ImageNet16-120 --search_space sss --learning_rate 0.01 
#####################################################################################################
import os, sys, time, glob, random, argparse
import numpy as np, collections
from copy import deepcopy
from pathlib import Path
import torch
import torch.nn as nn
from torch.distributions import Categorical
lib_dir = (Path(__file__).parent / '..' / '..' / 'lib').resolve()
if str(lib_dir) not in sys.path: sys.path.insert(0, str(lib_dir))
from config_utils import load_config, dict2config, configure2str
from datasets     import get_datasets, SearchDataset
from procedures   import prepare_seed, prepare_logger, save_checkpoint, copy_checkpoint, get_optim_scheduler
from utils        import get_model_infos, obtain_accuracy
from log_utils    import AverageMeter, time_string, convert_secs2time
from models       import CellStructure, get_search_spaces
from nats_bench   import create


class PolicyTopology(nn.Module):

  def __init__(self, search_space, max_nodes=4):
    super(PolicyTopology, self).__init__()
    self.max_nodes    = max_nodes
    self.search_space = deepcopy(search_space)
    self.edge2index   = {}
    for i in range(1, max_nodes):
      for j in range(i):
        node_str = '{:}<-{:}'.format(i, j)
        self.edge2index[ node_str ] = len(self.edge2index)
    self.arch_parameters = nn.Parameter(1e-3*torch.randn(len(self.edge2index), len(search_space)))

  def generate_arch(self, actions):
    genotypes = []
    for i in range(1, self.max_nodes):
      xlist = []
      for j in range(i):
        node_str = '{:}<-{:}'.format(i, j)
        op_name  = self.search_space[ actions[ self.edge2index[ node_str ] ] ]
        xlist.append((op_name, j))
      genotypes.append( tuple(xlist) )
    return CellStructure( genotypes )

  def genotype(self):
    genotypes = []
    for i in range(1, self.max_nodes):
      xlist = []
      for j in range(i):
        node_str = '{:}<-{:}'.format(i, j)
        with torch.no_grad():
          weights = self.arch_parameters[ self.edge2index[node_str] ]
          op_name = self.search_space[ weights.argmax().item() ]
        xlist.append((op_name, j))
      genotypes.append( tuple(xlist) )
    return CellStructure( genotypes )
    
  def forward(self):
    alphas  = nn.functional.softmax(self.arch_parameters, dim=-1)
    return alphas


class PolicySize(nn.Module):

  def __init__(self, search_space):
    super(PolicySize, self).__init__()
    self.candidates = search_space['candidates']
    self.numbers = search_space['numbers']
    self.arch_parameters = nn.Parameter(1e-3*torch.randn(self.numbers, len(self.candidates)))

  def generate_arch(self, actions):
    channels = [str(self.candidates[i]) for i in actions]
    return ':'.join(channels)

  def genotype(self):
    channels = []
    for i in range(self.numbers):
      index = self.arch_parameters[i].argmax().item()
      channels.append(str(self.candidates[index]))
    return ':'.join(channels)
    
  def forward(self):
    alphas  = nn.functional.softmax(self.arch_parameters, dim=-1)
    return alphas


class ExponentialMovingAverage(object):
  """Class that maintains an exponential moving average."""

  def __init__(self, momentum):
    self._numerator   = 0
    self._denominator = 0
    self._momentum    = momentum

  def update(self, value):
    self._numerator = self._momentum * self._numerator + (1 - self._momentum) * value
    self._denominator = self._momentum * self._denominator + (1 - self._momentum)

  def value(self):
    """Return the current value of the moving average"""
    return self._numerator / self._denominator


def select_action(policy):
  probs = policy()
  m = Categorical(probs)
  action = m.sample()
  # policy.saved_log_probs.append(m.log_prob(action))
  return m.log_prob(action), action.cpu().tolist()


def main(xargs, api):
  torch.set_num_threads(4)
  prepare_seed(xargs.rand_seed)
  logger = prepare_logger(args)
  
  search_space = get_search_spaces(xargs.search_space, 'nats-bench')
  if xargs.search_space == 'tss':
    policy = PolicyTopology(search_space)
  else:
    policy = PolicySize(search_space)
  optimizer = torch.optim.Adam(policy.parameters(), lr=xargs.learning_rate)
  #optimizer = torch.optim.SGD(policy.parameters(), lr=xargs.learning_rate)
  eps       = np.finfo(np.float32).eps.item()
  baseline  = ExponentialMovingAverage(xargs.EMA_momentum)
  logger.log('policy    : {:}'.format(policy))
  logger.log('optimizer : {:}'.format(optimizer))
  logger.log('eps       : {:}'.format(eps))

  # nas dataset load
  logger.log('{:} use api : {:}'.format(time_string(), api))
  api.reset_time()

  # REINFORCE
  x_start_time = time.time()
  logger.log('Will start searching with time budget of {:} s.'.format(xargs.time_budget))
  total_steps, total_costs, trace = 0, [], []
  current_best_index = []
  while len(total_costs) == 0 or total_costs[-1] < xargs.time_budget:
    start_time = time.time()
    log_prob, action = select_action( policy )
    arch   = policy.generate_arch( action )
    reward, _, _, current_total_cost = api.simulate_train_eval(arch, xargs.dataset, hp='12')
    trace.append((reward, arch))
    total_costs.append(current_total_cost)

    baseline.update(reward)
    # calculate loss
    policy_loss = ( -log_prob * (reward - baseline.value()) ).sum()
    optimizer.zero_grad()
    policy_loss.backward()
    optimizer.step()
    # accumulate time
    total_steps += 1
    logger.log('step [{:3d}] : average-reward={:.3f} : policy_loss={:.4f} : {:}'.format(total_steps, baseline.value(), policy_loss.item(), policy.genotype()))
    # to analyze
    current_best_index.append(api.query_index_by_arch(max(trace, key=lambda x: x[0])[1]))
  # best_arch = policy.genotype() # first version
  best_arch = max(trace, key=lambda x: x[0])[1]
  logger.log('REINFORCE finish with {:} steps and {:.1f} s (real cost={:.3f}).'.format(total_steps, total_costs[-1], time.time()-x_start_time))
  info = api.query_info_str_by_arch(best_arch, '200' if xargs.search_space == 'tss' else '90')
  logger.log('{:}'.format(info))
  logger.log('-'*100)
  logger.close()

  return logger.log_dir, current_best_index, total_costs


if __name__ == '__main__':
  parser = argparse.ArgumentParser("The REINFORCE Algorithm")
  parser.add_argument('--data_path',          type=str,   help='Path to dataset')
  parser.add_argument('--dataset',            type=str,   choices=['cifar10', 'cifar100', 'ImageNet16-120'], help='Choose between Cifar10/100 and ImageNet-16.')
  parser.add_argument('--search_space',       type=str,   choices=['tss', 'sss'], help='Choose the search space.')
  parser.add_argument('--learning_rate',      type=float, help='The learning rate for REINFORCE.')
  parser.add_argument('--EMA_momentum',       type=float, default=0.9,   help='The momentum value for EMA.')
  parser.add_argument('--time_budget',        type=int,   default=20000, help='The total time cost budge for searching (in seconds).')
  parser.add_argument('--loops_if_rand',      type=int,   default=500,   help='The total runs for evaluation.')
  # log
  parser.add_argument('--save_dir',           type=str,   default='./output/search', help='Folder to save checkpoints and log.')
  parser.add_argument('--arch_nas_dataset',   type=str,   help='The path to load the architecture dataset (tiny-nas-benchmark).')
  parser.add_argument('--print_freq',         type=int,   help='print frequency (default: 200)')
  parser.add_argument('--rand_seed',          type=int,   default=-1,    help='manual seed')
  args = parser.parse_args()

  api = create(None, args.search_space, fast_mode=True, verbose=False)

  args.save_dir = os.path.join('{:}-{:}'.format(args.save_dir, args.search_space),
                               '{:}-T{:}'.format(args.dataset, args.time_budget), 'REINFORCE-{:}'.format(args.learning_rate))
  print('save-dir : {:}'.format(args.save_dir))

  if args.rand_seed < 0:
    save_dir, all_info = None, collections.OrderedDict()
    for i in range(args.loops_if_rand):
      print ('{:} : {:03d}/{:03d}'.format(time_string(), i, args.loops_if_rand))
      args.rand_seed = random.randint(1, 100000)
      save_dir, all_archs, all_total_times = main(args, api)
      all_info[i] = {'all_archs': all_archs,
                     'all_total_times': all_total_times}
    save_path = save_dir / 'results.pth'
    print('save into {:}'.format(save_path))
    torch.save(all_info, save_path)
  else:
    main(args, api)