##################################################### # Copyright (c) Xuanyi Dong [GitHub D-X-Y], 2021.04 # ##################################################### # python exps/LFNA/lfna.py --env_version v1 --hidden_dim 16 --layer_dim 32 --epochs 50000 ##################################################### import sys, time, copy, torch, random, argparse from tqdm import tqdm from copy import deepcopy from pathlib import Path lib_dir = (Path(__file__).parent / ".." / ".." / "lib").resolve() if str(lib_dir) not in sys.path: sys.path.insert(0, str(lib_dir)) from procedures import prepare_seed, prepare_logger, save_checkpoint, copy_checkpoint from log_utils import time_string from log_utils import AverageMeter, convert_secs2time from utils import split_str2indexes from procedures.advanced_main import basic_train_fn, basic_eval_fn from procedures.metric_utils import SaveMetric, MSEMetric, ComposeMetric from datasets.synthetic_core import get_synthetic_env from models.xcore import get_model from xlayers import super_core, trunc_normal_ from lfna_utils import lfna_setup, train_model, TimeData from lfna_models_v2 import HyperNet def main(args): logger, env_info, model_kwargs = lfna_setup(args) dynamic_env = env_info["dynamic_env"] model = get_model(**model_kwargs) model = model.to(args.device) criterion = torch.nn.MSELoss() logger.log("There are {:} weights.".format(model.get_w_container().numel())) # meta_train_range = (dynamic_env.min_timestamp, (dynamic_env.min_timestamp + dynamic_env.max_timestamp) / 2) # meta_train_interval = dynamic_env.timestamp_interval shape_container = model.get_w_container().to_shape_container() # pre-train the hypernetwork timestamps = list( dynamic_env.get_timestamp(index) for index in range(len(dynamic_env) // 2) ) hypernet = HyperNet(shape_container, args.layer_dim, args.task_dim, timestamps) hypernet = hypernet.to(args.device) import pdb pdb.set_trace() # task_embed = torch.nn.Parameter(torch.Tensor(env_info["total"], args.task_dim)) total_bar = 16 task_embeds = [] for i in range(total_bar): tensor = torch.Tensor(1, args.task_dim).to(args.device) task_embeds.append(torch.nn.Parameter(tensor)) for task_embed in task_embeds: trunc_normal_(task_embed, std=0.02) model.train() hypernet.train() parameters = list(hypernet.parameters()) + task_embeds # optimizer = torch.optim.Adam(parameters, lr=args.init_lr, amsgrad=True) optimizer = torch.optim.Adam(parameters, lr=args.init_lr, weight_decay=1e-5) lr_scheduler = torch.optim.lr_scheduler.MultiStepLR( optimizer, milestones=[ int(args.epochs * 0.8), int(args.epochs * 0.9), ], gamma=0.1, ) # total_bar = env_info["total"] - 1 # LFNA meta-training loss_meter = AverageMeter() per_epoch_time, start_time = AverageMeter(), time.time() for iepoch in range(args.epochs): need_time = "Time Left: {:}".format( convert_secs2time(per_epoch_time.avg * (args.epochs - iepoch), True) ) head_str = ( "[{:}] [{:04d}/{:04d}] ".format(time_string(), iepoch, args.epochs) + need_time ) losses = [] # for ibatch in range(args.meta_batch): for cur_time in range(total_bar): # cur_time = random.randint(0, total_bar) cur_task_embed = task_embeds[cur_time] cur_container = hypernet(cur_task_embed) cur_x = env_info["{:}-x".format(cur_time)].to(args.device) cur_y = env_info["{:}-y".format(cur_time)].to(args.device) cur_dataset = TimeData(cur_time, cur_x, cur_y) preds = model.forward_with_container(cur_dataset.x, cur_container) optimizer.zero_grad() loss = criterion(preds, cur_dataset.y) losses.append(loss) final_loss = torch.stack(losses).mean() final_loss.backward() optimizer.step() lr_scheduler.step() loss_meter.update(final_loss.item()) if iepoch % 100 == 0: logger.log( head_str + " meta-loss: {:.4f} ({:.4f}) :: lr={:.5f}, batch={:}".format( loss_meter.avg, loss_meter.val, min(lr_scheduler.get_last_lr()), len(losses), ) ) save_checkpoint( { "hypernet": hypernet.state_dict(), "task_embed": task_embed, "lr_scheduler": lr_scheduler.state_dict(), "iepoch": iepoch, }, logger.path("model"), logger, ) loss_meter.reset() per_epoch_time.update(time.time() - start_time) start_time = time.time() print(model) print(hypernet) w_container_per_epoch = dict() for idx in range(0, total_bar): future_time = env_info["{:}-timestamp".format(idx)] future_x = env_info["{:}-x".format(idx)] future_y = env_info["{:}-y".format(idx)] future_container = hypernet(task_embeds[idx]) w_container_per_epoch[idx] = future_container.no_grad_clone() with torch.no_grad(): future_y_hat = model.forward_with_container( future_x, w_container_per_epoch[idx] ) future_loss = criterion(future_y_hat, future_y) logger.log("meta-test: [{:03d}] -> loss={:.4f}".format(idx, future_loss.item())) save_checkpoint( {"w_container_per_epoch": w_container_per_epoch}, logger.path(None) / "final-ckp.pth", logger, ) logger.log("-" * 200 + "\n") logger.close() if __name__ == "__main__": parser = argparse.ArgumentParser(".") parser.add_argument( "--save_dir", type=str, default="./outputs/lfna-synthetic/lfna-battle", help="The checkpoint directory.", ) parser.add_argument( "--env_version", type=str, required=True, help="The synthetic enviornment version.", ) parser.add_argument( "--hidden_dim", type=int, required=True, help="The hidden dimension.", ) parser.add_argument( "--layer_dim", type=int, required=True, help="The hidden dimension.", ) ##### parser.add_argument( "--init_lr", type=float, default=0.1, help="The initial learning rate for the optimizer (default is Adam)", ) parser.add_argument( "--meta_batch", type=int, default=64, help="The batch size for the meta-model", ) parser.add_argument( "--epochs", type=int, default=2000, help="The total number of epochs.", ) parser.add_argument( "--device", type=str, default="cpu", help="", ) # Random Seed parser.add_argument("--rand_seed", type=int, default=-1, help="manual seed") args = parser.parse_args() if args.rand_seed is None or args.rand_seed < 0: args.rand_seed = random.randint(1, 100000) assert args.save_dir is not None, "The save dir argument can not be None" args.task_dim = args.layer_dim args.save_dir = "{:}-{:}-d{:}".format( args.save_dir, args.env_version, args.hidden_dim ) main(args)