############################################################################## # Copyright (c) Xuanyi Dong [GitHub D-X-Y], 2020.08 ########################## ############################################################################## # NATS-Bench: Benchmarking NAS algorithms for Architecture Topology and Size # ############################################################################## # pytest --capture=tee-sys # ############################################################################## """This file is used to quickly test the API.""" import os import pytest import random from nats_bench.api_size import NATSsize from nats_bench.api_size import ALL_BASE_NAMES as sss_base_names from nats_bench.api_topology import NATStopology from nats_bench.api_topology import ALL_BASE_NAMES as tss_base_names def get_fake_torch_home_dir(): return os.environ['FAKE_TORCH_HOME'] class TestNATSBench(object): def test_nats_bench_tss(self, benchmark_dir=None, fake_random=True): if benchmark_dir is None: benchmark_dir = os.path.join(get_fake_torch_home_dir(), sss_base_names[-1] + '-simple') return _test_nats_bench(benchmark_dir, True, fake_random) def test_nats_bench_sss(self, benchmark_dir=None, fake_random=True): if benchmark_dir is None: benchmark_dir = os.path.join(get_fake_torch_home_dir(), tss_base_names[-1] + '-simple') return _test_nats_bench(benchmark_dir, False, fake_random) def test_01_th_issue(self): # Link: https://github.com/D-X-Y/NATS-Bench/issues/1 print('') tss_benchmark_dir = os.path.join(get_fake_torch_home_dir(), sss_base_names[-1] + '-simple') api = NATStopology(tss_benchmark_dir, True, False) # The performance of 0-th architecture on CIFAR-10 (trained by 12 epochs) info = api.get_more_info(0, 'cifar10', hp=12) print('The loss on the training set of CIFAR-10: {:}'.format(info['train-loss'])) print('The total training time for 12 epochs on CIFAR-10: {:}'.format(info['train-all-time'])) print('The per-epoch training time on CIFAR-10: {:}'.format(info['train-per-time'])) print('The total evaluation time on the test set of CIFAR-10 for 12 times: {:}'.format(info['test-all-time'])) print('The evaluation time on the test set of CIFAR-10: {:}'.format(info['test-per-time'])) # Please note that the splits of train/validation/test on CIFAR-10 in our NATS-Bench paper is different from the original CIFAR paper. cost_info = api.get_cost_info(0, 'cifar10') xkeys = ['T-train@epoch', # The per epoch training cost for CIFAR-10. Note that the training set of CIFAR-10 in NATS-Bench is a subset of the original training set in CIFAR paper. 'T-train@total', 'T-ori-test@epoch', # The time cost for the evaluation on the original test split of CIFAR-10, which is the validation + test sets of CIFAR-10 on NATS-Bench. 'T-ori-test@total'] # T-ori-test@epoch * 12 times. for xkey in xkeys: print('The cost info [{:}] for 0-th architecture on CIFAR-10 is {:}'.format(xkey, cost_info[xkey])) def _test_nats_bench(benchmark_dir, is_tss, fake_random, verbose=False): """The main test entry for NATS-Bench.""" if is_tss: api = NATStopology(benchmark_dir, True, verbose) else: api = NATSsize(benchmark_dir, True, verbose) if fake_random: test_indexes = [0, 11, 241] else: test_indexes = [random.randint(0, len(api) - 1) for _ in range(10)] key2dataset = {'cifar10': 'CIFAR-10', 'cifar100': 'CIFAR-100', 'ImageNet16-120': 'ImageNet16-120'} for index in test_indexes: print('\n\nEvaluate the {:5d}-th architecture.'.format(index)) for key, dataset in key2dataset.items(): # Query the loss / accuracy / time for the `index`-th candidate # architecture on CIFAR-10 # info is a dict, where you can easily figure out the meaning by key info = api.get_more_info(index, key) print(' -->> The performance on {:}: {:}'.format(dataset, info)) # Query the flops, params, latency. info is a dict. info = api.get_cost_info(index, key) print(' -->> The cost info on {:}: {:}'.format(dataset, info)) # Simulate the training of the `index`-th candidate: validation_accuracy, latency, time_cost, current_total_time_cost = api.simulate_train_eval( index, dataset=key, hp='12') print(' -->> The validation accuracy={:}, latency={:}, ' 'the current time cost={:} s, accumulated time cost={:} s' .format(validation_accuracy, latency, time_cost, current_total_time_cost)) # Print the configuration of the `index`-th architecture on CIFAR-10 config = api.get_net_config(index, key) print(' -->> The configuration on {:} is {:}'.format(dataset, config)) # Show the information of the `index`-th architecture api.show(index) with pytest.raises(ValueError): api.get_more_info(100000, 'cifar10')