############################################################################## # NATS-Bench: Benchmarking NAS Algorithms for Architecture Topology and Size # ############################################################################## # Copyright (c) Xuanyi Dong [GitHub D-X-Y], 2020.07 # ############################################################################## # This file is used to train (all) architecture candidate in the topology # # search space in NATS-Bench (tss) with different hyper-parameters. # # When use mode=new, it will automatically detect whether the checkpoint of # # a trial exists, if so, it will skip this trial. When use mode=cover, it # # will ignore the (possible) existing checkpoint, run each trial, and save. # ############################################################################## # Please use the script of scripts/NATS-Bench/train-topology.sh to run. # # bash scripts/NATS-Bench/train-topology.sh 00000-15624 12 777 # # bash scripts/NATS-Bench/train-topology.sh 00000-15624 200 '777 888 999' # # # ################ # # [Deprecated Function: Generate the meta information] # # python ./exps/NATS-Bench/main-tss.py --mode meta # ############################################################################## import os, sys, time, torch, random, argparse from typing import List, Text, Dict, Any from PIL import ImageFile ImageFile.LOAD_TRUNCATED_IMAGES = True from copy import deepcopy from pathlib import Path from xautodl.config_utils import dict2config, load_config from xautodl.procedures import bench_evaluate_for_seed from xautodl.procedures import get_machine_info from xautodl.datasets import get_datasets from xautodl.log_utils import Logger, AverageMeter, time_string, convert_secs2time from xautodl.models import CellStructure, CellArchitectures, get_search_spaces from xautodl.utils import split_str2indexes def evaluate_all_datasets( arch: Text, datasets: List[Text], xpaths: List[Text], splits: List[Text], config_path: Text, seed: int, raw_arch_config, workers, logger, ): machine_info, raw_arch_config = get_machine_info(), deepcopy(raw_arch_config) all_infos = {"info": machine_info} all_dataset_keys = [] # look all the datasets for dataset, xpath, split in zip(datasets, xpaths, splits): # train valid data train_data, valid_data, xshape, class_num = get_datasets(dataset, xpath, -1) # load the configuration if dataset == "cifar10" or dataset == "cifar100": split_info = load_config( "configs/nas-benchmark/cifar-split.txt", None, None ) elif dataset.startswith("ImageNet16"): split_info = load_config( "configs/nas-benchmark/{:}-split.txt".format(dataset), None, None ) else: raise ValueError("invalid dataset : {:}".format(dataset)) config = load_config( config_path, dict(class_num=class_num, xshape=xshape), logger ) # check whether use splited validation set if bool(split): assert dataset == "cifar10" ValLoaders = { "ori-test": torch.utils.data.DataLoader( valid_data, batch_size=config.batch_size, shuffle=False, num_workers=workers, pin_memory=True, ) } assert len(train_data) == len(split_info.train) + len( split_info.valid ), "invalid length : {:} vs {:} + {:}".format( len(train_data), len(split_info.train), len(split_info.valid) ) train_data_v2 = deepcopy(train_data) train_data_v2.transform = valid_data.transform valid_data = train_data_v2 # data loader train_loader = torch.utils.data.DataLoader( train_data, batch_size=config.batch_size, sampler=torch.utils.data.sampler.SubsetRandomSampler(split_info.train), num_workers=workers, pin_memory=True, ) valid_loader = torch.utils.data.DataLoader( valid_data, batch_size=config.batch_size, sampler=torch.utils.data.sampler.SubsetRandomSampler(split_info.valid), num_workers=workers, pin_memory=True, ) ValLoaders["x-valid"] = valid_loader else: # data loader train_loader = torch.utils.data.DataLoader( train_data, batch_size=config.batch_size, shuffle=True, num_workers=workers, pin_memory=True, ) valid_loader = torch.utils.data.DataLoader( valid_data, batch_size=config.batch_size, shuffle=False, num_workers=workers, pin_memory=True, ) if dataset == "cifar10": ValLoaders = {"ori-test": valid_loader} elif dataset == "cifar100": cifar100_splits = load_config( "configs/nas-benchmark/cifar100-test-split.txt", None, None ) ValLoaders = { "ori-test": valid_loader, "x-valid": torch.utils.data.DataLoader( valid_data, batch_size=config.batch_size, sampler=torch.utils.data.sampler.SubsetRandomSampler( cifar100_splits.xvalid ), num_workers=workers, pin_memory=True, ), "x-test": torch.utils.data.DataLoader( valid_data, batch_size=config.batch_size, sampler=torch.utils.data.sampler.SubsetRandomSampler( cifar100_splits.xtest ), num_workers=workers, pin_memory=True, ), } elif dataset == "ImageNet16-120": imagenet16_splits = load_config( "configs/nas-benchmark/imagenet-16-120-test-split.txt", None, None ) ValLoaders = { "ori-test": valid_loader, "x-valid": torch.utils.data.DataLoader( valid_data, batch_size=config.batch_size, sampler=torch.utils.data.sampler.SubsetRandomSampler( imagenet16_splits.xvalid ), num_workers=workers, pin_memory=True, ), "x-test": torch.utils.data.DataLoader( valid_data, batch_size=config.batch_size, sampler=torch.utils.data.sampler.SubsetRandomSampler( imagenet16_splits.xtest ), num_workers=workers, pin_memory=True, ), } else: raise ValueError("invalid dataset : {:}".format(dataset)) dataset_key = "{:}".format(dataset) if bool(split): dataset_key = dataset_key + "-valid" logger.log( "Evaluate ||||||| {:10s} ||||||| Train-Num={:}, Valid-Num={:}, Train-Loader-Num={:}, Valid-Loader-Num={:}, batch size={:}".format( dataset_key, len(train_data), len(valid_data), len(train_loader), len(valid_loader), config.batch_size, ) ) logger.log( "Evaluate ||||||| {:10s} ||||||| Config={:}".format(dataset_key, config) ) for key, value in ValLoaders.items(): logger.log( "Evaluate ---->>>> {:10s} with {:} batchs".format(key, len(value)) ) arch_config = dict2config( dict( name="infer.tiny", C=raw_arch_config["channel"], N=raw_arch_config["num_cells"], genotype=arch, num_classes=config.class_num, ), None, ) results = bench_evaluate_for_seed( arch_config, config, train_loader, ValLoaders, seed, logger ) all_infos[dataset_key] = results all_dataset_keys.append(dataset_key) all_infos["all_dataset_keys"] = all_dataset_keys return all_infos def main( save_dir: Path, workers: int, datasets: List[Text], xpaths: List[Text], splits: List[int], seeds: List[int], nets: List[str], opt_config: Dict[Text, Any], to_evaluate_indexes: tuple, cover_mode: bool, arch_config: Dict[Text, Any], ): log_dir = save_dir / "logs" log_dir.mkdir(parents=True, exist_ok=True) logger = Logger(str(log_dir), os.getpid(), False) logger.log("xargs : seeds = {:}".format(seeds)) logger.log("xargs : cover_mode = {:}".format(cover_mode)) logger.log("-" * 100) logger.log( "Start evaluating range =: {:06d} - {:06d}".format( min(to_evaluate_indexes), max(to_evaluate_indexes) ) + "({:} in total) / {:06d} with cover-mode={:}".format( len(to_evaluate_indexes), len(nets), cover_mode ) ) for i, (dataset, xpath, split) in enumerate(zip(datasets, xpaths, splits)): logger.log( "--->>> Evaluate {:}/{:} : dataset={:9s}, path={:}, split={:}".format( i, len(datasets), dataset, xpath, split ) ) logger.log("--->>> optimization config : {:}".format(opt_config)) start_time, epoch_time = time.time(), AverageMeter() for i, index in enumerate(to_evaluate_indexes): arch = nets[index] logger.log( "\n{:} evaluate {:06d}/{:06d} ({:06d}/{:06d})-th arch [seeds={:}] {:}".format( time_string(), i, len(to_evaluate_indexes), index, len(nets), seeds, "-" * 15, ) ) logger.log("{:} {:} {:}".format("-" * 15, arch, "-" * 15)) # test this arch on different datasets with different seeds has_continue = False for seed in seeds: to_save_name = save_dir / "arch-{:06d}-seed-{:04d}.pth".format(index, seed) if to_save_name.exists(): if cover_mode: logger.log( "Find existing file : {:}, remove it before evaluation".format( to_save_name ) ) os.remove(str(to_save_name)) else: logger.log( "Find existing file : {:}, skip this evaluation".format( to_save_name ) ) has_continue = True continue results = evaluate_all_datasets( CellStructure.str2structure(arch), datasets, xpaths, splits, opt_config, seed, arch_config, workers, logger, ) torch.save(results, to_save_name) logger.log( "\n{:} evaluate {:06d}/{:06d} ({:06d}/{:06d})-th arch [seeds={:}] ===>>> {:}".format( time_string(), i, len(to_evaluate_indexes), index, len(nets), seeds, to_save_name, ) ) # measure elapsed time if not has_continue: epoch_time.update(time.time() - start_time) start_time = time.time() need_time = "Time Left: {:}".format( convert_secs2time(epoch_time.avg * (len(to_evaluate_indexes) - i - 1), True) ) logger.log( "This arch costs : {:}".format(convert_secs2time(epoch_time.val, True)) ) logger.log("{:}".format("*" * 100)) logger.log( "{:} {:74s} {:}".format( "*" * 10, "{:06d}/{:06d} ({:06d}/{:06d})-th done, left {:}".format( i, len(to_evaluate_indexes), index, len(nets), need_time ), "*" * 10, ) ) logger.log("{:}".format("*" * 100)) logger.close() def train_single_model( save_dir, workers, datasets, xpaths, splits, use_less, seeds, model_str, arch_config ): assert torch.cuda.is_available(), "CUDA is not available." torch.backends.cudnn.enabled = True torch.backends.cudnn.deterministic = True # torch.backends.cudnn.benchmark = True torch.set_num_threads(workers) save_dir = ( Path(save_dir) / "specifics" / "{:}-{:}-{:}-{:}".format( "LESS" if use_less else "FULL", model_str, arch_config["channel"], arch_config["num_cells"], ) ) logger = Logger(str(save_dir), 0, False) if model_str in CellArchitectures: arch = CellArchitectures[model_str] logger.log( "The model string is found in pre-defined architecture dict : {:}".format( model_str ) ) else: try: arch = CellStructure.str2structure(model_str) except: raise ValueError( "Invalid model string : {:}. It can not be found or parsed.".format( model_str ) ) assert arch.check_valid_op( get_search_spaces("cell", "full") ), "{:} has the invalid op.".format(arch) logger.log("Start train-evaluate {:}".format(arch.tostr())) logger.log("arch_config : {:}".format(arch_config)) start_time, seed_time = time.time(), AverageMeter() for _is, seed in enumerate(seeds): logger.log( "\nThe {:02d}/{:02d}-th seed is {:} ----------------------<.>----------------------".format( _is, len(seeds), seed ) ) to_save_name = save_dir / "seed-{:04d}.pth".format(seed) if to_save_name.exists(): logger.log( "Find the existing file {:}, directly load!".format(to_save_name) ) checkpoint = torch.load(to_save_name) else: logger.log( "Does not find the existing file {:}, train and evaluate!".format( to_save_name ) ) checkpoint = evaluate_all_datasets( arch, datasets, xpaths, splits, use_less, seed, arch_config, workers, logger, ) torch.save(checkpoint, to_save_name) # log information logger.log("{:}".format(checkpoint["info"])) all_dataset_keys = checkpoint["all_dataset_keys"] for dataset_key in all_dataset_keys: logger.log( "\n{:} dataset : {:} {:}".format("-" * 15, dataset_key, "-" * 15) ) dataset_info = checkpoint[dataset_key] # logger.log('Network ==>\n{:}'.format( dataset_info['net_string'] )) logger.log( "Flops = {:} MB, Params = {:} MB".format( dataset_info["flop"], dataset_info["param"] ) ) logger.log("config : {:}".format(dataset_info["config"])) logger.log( "Training State (finish) = {:}".format(dataset_info["finish-train"]) ) last_epoch = dataset_info["total_epoch"] - 1 train_acc1es, train_acc5es = ( dataset_info["train_acc1es"], dataset_info["train_acc5es"], ) valid_acc1es, valid_acc5es = ( dataset_info["valid_acc1es"], dataset_info["valid_acc5es"], ) logger.log( "Last Info : Train = Acc@1 {:.2f}% Acc@5 {:.2f}% Error@1 {:.2f}%, Test = Acc@1 {:.2f}% Acc@5 {:.2f}% Error@1 {:.2f}%".format( train_acc1es[last_epoch], train_acc5es[last_epoch], 100 - train_acc1es[last_epoch], valid_acc1es[last_epoch], valid_acc5es[last_epoch], 100 - valid_acc1es[last_epoch], ) ) # measure elapsed time seed_time.update(time.time() - start_time) start_time = time.time() need_time = "Time Left: {:}".format( convert_secs2time(seed_time.avg * (len(seeds) - _is - 1), True) ) logger.log( "\n<<<***>>> The {:02d}/{:02d}-th seed is {:} other procedures need {:}".format( _is, len(seeds), seed, need_time ) ) logger.close() def generate_meta_info(save_dir, max_node, divide=40): aa_nas_bench_ss = get_search_spaces("cell", "nas-bench-201") archs = CellStructure.gen_all(aa_nas_bench_ss, max_node, False) print( "There are {:} archs vs {:}.".format( len(archs), len(aa_nas_bench_ss) ** ((max_node - 1) * max_node / 2) ) ) random.seed(88) # please do not change this line for reproducibility random.shuffle(archs) # to test fixed-random shuffle # print ('arch [0] : {:}\n---->>>> {:}'.format( archs[0], archs[0].tostr() )) # print ('arch [9] : {:}\n---->>>> {:}'.format( archs[9], archs[9].tostr() )) assert ( archs[0].tostr() == "|avg_pool_3x3~0|+|nor_conv_1x1~0|skip_connect~1|+|nor_conv_1x1~0|skip_connect~1|skip_connect~2|" ), "please check the 0-th architecture : {:}".format(archs[0]) assert ( archs[9].tostr() == "|avg_pool_3x3~0|+|none~0|none~1|+|skip_connect~0|none~1|nor_conv_3x3~2|" ), "please check the 9-th architecture : {:}".format(archs[9]) assert ( archs[123].tostr() == "|avg_pool_3x3~0|+|avg_pool_3x3~0|nor_conv_1x1~1|+|none~0|avg_pool_3x3~1|nor_conv_3x3~2|" ), "please check the 123-th architecture : {:}".format(archs[123]) total_arch = len(archs) num = 50000 indexes_5W = list(range(num)) random.seed(1021) random.shuffle(indexes_5W) train_split = sorted(list(set(indexes_5W[: num // 2]))) valid_split = sorted(list(set(indexes_5W[num // 2 :]))) assert len(train_split) + len(valid_split) == num assert ( train_split[0] == 0 and train_split[10] == 26 and train_split[111] == 203 and valid_split[0] == 1 and valid_split[10] == 18 and valid_split[111] == 242 ), "{:} {:} {:} - {:} {:} {:}".format( train_split[0], train_split[10], train_split[111], valid_split[0], valid_split[10], valid_split[111], ) splits = {num: {"train": train_split, "valid": valid_split}} info = { "archs": [x.tostr() for x in archs], "total": total_arch, "max_node": max_node, "splits": splits, } save_dir = Path(save_dir) save_dir.mkdir(parents=True, exist_ok=True) save_name = save_dir / "meta-node-{:}.pth".format(max_node) assert not save_name.exists(), "{:} already exist".format(save_name) torch.save(info, save_name) print("save the meta file into {:}".format(save_name)) def traverse_net(max_node): aa_nas_bench_ss = get_search_spaces("cell", "nats-bench") archs = CellStructure.gen_all(aa_nas_bench_ss, max_node, False) print( "There are {:} archs vs {:}.".format( len(archs), len(aa_nas_bench_ss) ** ((max_node - 1) * max_node / 2) ) ) random.seed(88) # please do not change this line for reproducibility random.shuffle(archs) assert ( archs[0].tostr() == "|avg_pool_3x3~0|+|nor_conv_1x1~0|skip_connect~1|+|nor_conv_1x1~0|skip_connect~1|skip_connect~2|" ), "please check the 0-th architecture : {:}".format(archs[0]) assert ( archs[9].tostr() == "|avg_pool_3x3~0|+|none~0|none~1|+|skip_connect~0|none~1|nor_conv_3x3~2|" ), "please check the 9-th architecture : {:}".format(archs[9]) assert ( archs[123].tostr() == "|avg_pool_3x3~0|+|avg_pool_3x3~0|nor_conv_1x1~1|+|none~0|avg_pool_3x3~1|nor_conv_3x3~2|" ), "please check the 123-th architecture : {:}".format(archs[123]) return [x.tostr() for x in archs] def filter_indexes(xlist, mode, save_dir, seeds): all_indexes = [] for index in xlist: if mode == "cover": all_indexes.append(index) else: for seed in seeds: temp_path = save_dir / "arch-{:06d}-seed-{:04d}.pth".format(index, seed) if not temp_path.exists(): all_indexes.append(index) break print( "{:} [FILTER-INDEXES] : there are {:}/{:} architectures in total".format( time_string(), len(all_indexes), len(xlist) ) ) return all_indexes if __name__ == "__main__": # mode_choices = ['meta', 'new', 'cover'] + ['specific-{:}'.format(_) for _ in CellArchitectures.keys()] parser = argparse.ArgumentParser( description="NATS-Bench (topology search space)", formatter_class=argparse.ArgumentDefaultsHelpFormatter, ) parser.add_argument("--mode", type=str, required=True, help="The script mode.") parser.add_argument( "--save_dir", type=str, default="output/NATS-Bench-topology", help="Folder to save checkpoints and log.", ) parser.add_argument( "--max_node", type=int, default=4, help="The maximum node in a cell (please do not change it).", ) # use for train the model parser.add_argument( "--workers", type=int, default=8, help="number of data loading workers (default: 2)", ) parser.add_argument( "--srange", type=str, required=True, help="The range of models to be evaluated" ) parser.add_argument("--datasets", type=str, nargs="+", help="The applied datasets.") parser.add_argument( "--xpaths", type=str, nargs="+", help="The root path for this dataset." ) parser.add_argument( "--splits", type=int, nargs="+", help="The root path for this dataset." ) parser.add_argument( "--hyper", type=str, default="12", choices=["01", "12", "200"], help="The tag for hyper-parameters.", ) parser.add_argument( "--seeds", type=int, nargs="+", help="The range of models to be evaluated" ) parser.add_argument( "--channel", type=int, default=16, help="The number of channels." ) parser.add_argument( "--num_cells", type=int, default=5, help="The number of cells in one stage." ) parser.add_argument("--check_N", type=int, default=15625, help="For safety.") args = parser.parse_args() assert args.mode in ["meta", "new", "cover"] or args.mode.startswith( "specific-" ), "invalid mode : {:}".format(args.mode) if args.mode == "meta": generate_meta_info(args.save_dir, args.max_node) elif args.mode.startswith("specific"): assert len(args.mode.split("-")) == 2, "invalid mode : {:}".format(args.mode) model_str = args.mode.split("-")[1] train_single_model( args.save_dir, args.workers, args.datasets, args.xpaths, args.splits, args.use_less > 0, tuple(args.seeds), model_str, {"channel": args.channel, "num_cells": args.num_cells}, ) else: nets = traverse_net(args.max_node) if len(nets) != args.check_N: raise ValueError( "Pre-num-check failed : {:} vs {:}".format(len(nets), args.check_N) ) opt_config = "./configs/nas-benchmark/hyper-opts/{:}E.config".format(args.hyper) if not os.path.isfile(opt_config): raise ValueError("{:} is not a file.".format(opt_config)) save_dir = Path(args.save_dir) / "raw-data-{:}".format(args.hyper) save_dir.mkdir(parents=True, exist_ok=True) to_evaluate_indexes = split_str2indexes(args.srange, args.check_N, 5) if not len(args.seeds): raise ValueError("invalid length of seeds args: {:}".format(args.seeds)) if not (len(args.datasets) == len(args.xpaths) == len(args.splits)): raise ValueError( "invalid infos : {:} vs {:} vs {:}".format( len(args.datasets), len(args.xpaths), len(args.splits) ) ) if args.workers < 0: raise ValueError("invalid number of workers : {:}".format(args.workers)) target_indexes = filter_indexes( to_evaluate_indexes, args.mode, save_dir, args.seeds ) assert torch.cuda.is_available(), "CUDA is not available." torch.backends.cudnn.enabled = True torch.backends.cudnn.deterministic = True torch.set_num_threads(args.workers if args.workers > 0 else 1) main( save_dir, args.workers, args.datasets, args.xpaths, args.splits, tuple(args.seeds), nets, opt_config, target_indexes, args.mode == "cover", { "name": "infer.tiny", "channel": args.channel, "num_cells": args.num_cells, }, )