# Deep Residual Learning for Image Recognition, CVPR 2016
import torch.nn as nn
from .initialization import initialize_resnet

def conv3x3(in_planes, out_planes, stride=1, groups=1):
  return nn.Conv2d(in_planes, out_planes, kernel_size=3, stride=stride, padding=1, groups=groups, bias=False)


def conv1x1(in_planes, out_planes, stride=1):
  return nn.Conv2d(in_planes, out_planes, kernel_size=1, stride=stride, bias=False)


class BasicBlock(nn.Module):
  expansion = 1

  def __init__(self, inplanes, planes, stride=1, downsample=None, groups=1, base_width=64):
    super(BasicBlock, self).__init__()
    if groups != 1 or base_width != 64:
      raise ValueError('BasicBlock only supports groups=1 and base_width=64')
    # Both self.conv1 and self.downsample layers downsample the input when stride != 1
    self.conv1 = conv3x3(inplanes, planes, stride)
    self.bn1   = nn.BatchNorm2d(planes)
    self.relu  = nn.ReLU(inplace=True)
    self.conv2 = conv3x3(planes, planes)
    self.bn2   = nn.BatchNorm2d(planes)
    self.downsample = downsample
    self.stride = stride

  def forward(self, x):
    identity = x

    out = self.conv1(x)
    out = self.bn1(out)
    out = self.relu(out)

    out = self.conv2(out)
    out = self.bn2(out)

    if self.downsample is not None:
      identity = self.downsample(x)

    out += identity
    out = self.relu(out)

    return out


class Bottleneck(nn.Module):
  expansion = 4

  def __init__(self, inplanes, planes, stride=1, downsample=None, groups=1, base_width=64):
    super(Bottleneck, self).__init__()
    width = int(planes * (base_width / 64.)) * groups
    # Both self.conv2 and self.downsample layers downsample the input when stride != 1
    self.conv1 = conv1x1(inplanes, width)
    self.bn1   = nn.BatchNorm2d(width)
    self.conv2 = conv3x3(width, width, stride, groups)
    self.bn2   = nn.BatchNorm2d(width)
    self.conv3 = conv1x1(width, planes * self.expansion)
    self.bn3   = nn.BatchNorm2d(planes * self.expansion)
    self.relu  = nn.ReLU(inplace=True)
    self.downsample = downsample
    self.stride = stride

  def forward(self, x):
    identity = x

    out = self.conv1(x)
    out = self.bn1(out)
    out = self.relu(out)

    out = self.conv2(out)
    out = self.bn2(out)
    out = self.relu(out)

    out = self.conv3(out)
    out = self.bn3(out)

    if self.downsample is not None:
      identity = self.downsample(x)

    out += identity
    out = self.relu(out)

    return out


class ResNet(nn.Module):

  def __init__(self, block_name, layers, deep_stem, num_classes, zero_init_residual, groups, width_per_group):
    super(ResNet, self).__init__()

    #planes = [int(width_per_group * groups * 2 ** i) for i in range(4)]
    if block_name == 'BasicBlock'  : block= BasicBlock
    elif block_name == 'Bottleneck': block= Bottleneck
    else                           : raise ValueError('invalid block-name : {:}'.format(block_name))

    if not deep_stem:
      self.conv = nn.Sequential(
                   nn.Conv2d(3, 64, kernel_size=7, stride=2, padding=3, bias=False),
                   nn.BatchNorm2d(64), nn.ReLU(inplace=True))
    else:
      self.conv = nn.Sequential(
                   nn.Conv2d(           3, 32, kernel_size=3, stride=2, padding=1, bias=False),
                   nn.BatchNorm2d(32), nn.ReLU(inplace=True),
                   nn.Conv2d(32, 32, kernel_size=3, stride=1, padding=1, bias=False),
                   nn.BatchNorm2d(32), nn.ReLU(inplace=True),
                   nn.Conv2d(32, 64, kernel_size=3, stride=1, padding=1, bias=False),
                   nn.BatchNorm2d(64), nn.ReLU(inplace=True))
    self.inplanes = 64
    self.maxpool = nn.MaxPool2d(kernel_size=3, stride=2, padding=1)
    self.layer1 = self._make_layer(block, 64 , layers[0], stride=1, groups=groups, base_width=width_per_group)
    self.layer2 = self._make_layer(block, 128, layers[1], stride=2, groups=groups, base_width=width_per_group)
    self.layer3 = self._make_layer(block, 256, layers[2], stride=2, groups=groups, base_width=width_per_group)
    self.layer4 = self._make_layer(block, 512, layers[3], stride=2, groups=groups, base_width=width_per_group)
    self.avgpool = nn.AdaptiveAvgPool2d((1, 1))
    self.fc      = nn.Linear(512 * block.expansion, num_classes)
    self.message = 'block = {:}, layers = {:}, deep_stem = {:}, num_classes = {:}'.format(block, layers, deep_stem, num_classes)

    self.apply( initialize_resnet )

    # Zero-initialize the last BN in each residual branch,
    # so that the residual branch starts with zeros, and each residual block behaves like an identity.
    # This improves the model by 0.2~0.3% according to https://arxiv.org/abs/1706.02677
    if zero_init_residual:
      for m in self.modules():
        if isinstance(m, Bottleneck):
          nn.init.constant_(m.bn3.weight, 0)
        elif isinstance(m, BasicBlock):
          nn.init.constant_(m.bn2.weight, 0)

  def _make_layer(self, block, planes, blocks, stride, groups, base_width):
    downsample = None
    if stride != 1 or self.inplanes != planes * block.expansion:
      if stride == 2:
        downsample = nn.Sequential(
          nn.AvgPool2d(kernel_size=2, stride=2, padding=0),
          conv1x1(self.inplanes, planes * block.expansion, 1),
          nn.BatchNorm2d(planes * block.expansion),
        )
      elif stride == 1:
        downsample = nn.Sequential(
          conv1x1(self.inplanes, planes * block.expansion, stride),
          nn.BatchNorm2d(planes * block.expansion),
        )
      else: raise ValueError('invalid stride [{:}] for downsample'.format(stride))

    layers = []
    layers.append(block(self.inplanes, planes, stride, downsample, groups, base_width))
    self.inplanes = planes * block.expansion
    for _ in range(1, blocks):
      layers.append(block(self.inplanes, planes, 1, None, groups, base_width))

    return nn.Sequential(*layers)

  def get_message(self):
    return self.message

  def forward(self, x):
    x = self.conv(x)
    x = self.maxpool(x)

    x = self.layer1(x)
    x = self.layer2(x)
    x = self.layer3(x)
    x = self.layer4(x)

    features = self.avgpool(x)
    features = features.view(features.size(0), -1)
    logits   = self.fc(features)

    return features, logits