# An Algorithm-Agnostic NAS Benchmark (AA-NAS-Bench) We propose an Algorithm-Agnostic NAS Benchmark (AA-NAS-Bench) with a fixed search space, which provides a unified benchmark for almost any up-to-date NAS algorithms. The design of our search space is inspired from that used in the most popular cell-based searching algorithms, where a cell is represented as a directed acyclic graph. Each edge here is associated with an operation selected from a predefined operation set. For it to be applicable for all NAS algorithms, the search space defined in AA-NAS-Bench includes 4 nodes and 5 associated operation options, which generates 15,625 neural cell candidates in total. In this Markdown file, we provide: - Detailed instruction to reproduce AA-NAS-Bench. - 10 NAS algorithms evaluated in our paper. Note: please use `PyTorch >= 1.1.0` and `Python >= 3.6.0`. ## How to Use AA-NAS-Bench 1. Creating AA-NAS-Bench API from a file: ``` from aa_nas_api import AANASBenchAPI api = AANASBenchAPI('$path_to_meta_aa_nas_bench_file') api = AANASBenchAPI('AA-NAS-Bench-v1_0.pth') ``` 2. Show the number of architectures `len(api)` and each architecture `api[i]`: ``` num = len(api) for i, arch_str in enumerate(api): print ('{:5d}/{:5d} : {:}'.format(i, len(api), arch_str)) ``` 3. Show the results of all trials for a single architecture: ``` # show all information for a specific architecture api.show(1) api.show(2) # show the mean loss and accuracy of an architecture info = api.query_meta_info_by_index(1) loss, accuracy = info.get_metrics('cifar10', 'train') flops, params, latency = info.get_comput_costs('cifar100') # get the detailed information results = api.query_by_index(1, 'cifar100') print ('There are {:} trials for this architecture [{:}] on cifar100'.format(len(results), api[1])) print ('Latency : {:}'.format(results[0].get_latency())) print ('Train Info : {:}'.format(results[0].get_train())) print ('Valid Info : {:}'.format(results[0].get_eval('x-valid'))) print ('Test Info : {:}'.format(results[0].get_eval('x-test'))) # for the metric after a specific epoch print ('Train Info [10-th epoch] : {:}'.format(results[0].get_train(10))) ``` 4. Query the index of an architecture by string ``` index = api.query_index_by_arch('|nor_conv_3x3~0|+|nor_conv_3x3~0|avg_pool_3x3~1|+|skip_connect~0|nor_conv_3x3~1|skip_connect~2|') api.show(index) ``` 5. For other usages, please see `lib/aa_nas_api/api.py` ## Instruction to Generate AA-NAS-Bench 1. generate the meta file for AA-NAS-Bench using the following script, where `AA-NAS-BENCH` indicates the name and `4` indicates the maximum number of nodes in a cell. ``` bash scripts-search/AA-NAS-meta-gen.sh AA-NAS-BENCH 4 ``` 2. train earch architecture on a single GPU (see commands in `output/AA-NAS-BENCH-4/meta-node-4.opt-script.txt` which is automatically generated by step-1). ``` CUDA_VISIBLE_DEVICES=0 bash ./scripts-search/AA-NAS-train-archs.sh 0 389 -1 '777 888 999' ``` This command will train 390 architectures (id from 0 to 389) using the following four kinds of splits with three random seeds (777, 888, 999). | Dataset | Train | Eval | |:---------------:|:-------------:|:-----:| | CIFAR-10 | train | valid | | CIFAR-10 | train + valid | test | | CIFAR-100 | train | valid+test | | ImageNet-16-120 | train | valid+test | 3. calculate the latency, merge the results of all architectures, and simplify the results. (see commands in `output/AA-NAS-BENCH-4/meta-node-4.cal-script.txt` which is automatically generated by step-1). ``` OMP_NUM_THREADS=6 CUDA_VISIBLE_DEVICES=0 python exps/AA-NAS-statistics.py --mode cal --target_dir 000000-000389-C16-N5 ``` 4. merge all results into a single file for AA-NAS-Bench-API. ``` OMP_NUM_THREADS=4 python exps/AA-NAS-statistics.py --mode merge ``` [option] train a single architecture on a single GPU. ``` CUDA_VISIBLE_DEVICES=0 bash ./scripts-search/AA-NAS-train-net.sh resnet 16 5 CUDA_VISIBLE_DEVICES=0 bash ./scripts-search/AA-NAS-train-net.sh '|nor_conv_3x3~0|+|nor_conv_3x3~0|nor_conv_3x3~1|+|skip_connect~0|skip_connect~1|skip_connect~2|' 16 5 ``` ## To Reproduce 10 Baseline NAS Algorithms in AA-NAS-Bench We have tried our best to implement each method. However, still, some algorithms might obtain non-optimal results since their hyper-parameters might not fit our AA-NAS-Bench. If researchers can provide better results with different hyper-parameters, we are happy to update results according to the new experimental results. We also welcome more NAS algorithms to test on our dataset and would include them accordingly. -[1] `CUDA_VISIBLE_DEVICES=0 bash ./scripts-search/algos/DARTS-V1.sh cifar10 -1` -[2] `CUDA_VISIBLE_DEVICES=0 bash ./scripts-search/algos/DARTS-V2.sh cifar10 -1` -[3] `CUDA_VISIBLE_DEVICES=0 bash ./scripts-search/algos/GDAS.sh cifar10 -1` -[4] `CUDA_VISIBLE_DEVICES=0 bash ./scripts-search/algos/SETN.sh cifar10 -1` -[5] `CUDA_VISIBLE_DEVICES=0 bash ./scripts-search/algos/ENAS.sh cifar10 -1` -[6] `CUDA_VISIBLE_DEVICES=0 bash ./scripts-search/algos/RANDOM-NAS.sh cifar10 -1` -[7] `bash ./scripts-search/algos/R-EA.sh -1` -[8] `bash ./scripts-search/algos/Random.sh -1` -[9] `bash ./scripts-search/algos/REINFORCE.sh -1` -[10] `bash ./scripts-search/algos/BOHB.sh -1`