########################################################## # Learning to Efficiently Generate Models One Step Ahead # ########################################################## # <----> run on CPU # python exps/GeMOSA/main.py --env_version v1 --workers 0 # <----> run on a GPU # python exps/GeMOSA/main.py --env_version v1 --lr 0.002 --hidden_dim 16 --meta_batch 256 --device cuda # python exps/GeMOSA/main.py --env_version v2 --lr 0.002 --hidden_dim 16 --meta_batch 256 --device cuda # python exps/GeMOSA/main.py --env_version v3 --lr 0.002 --hidden_dim 32 --time_dim 32 --meta_batch 256 --device cuda # python exps/GeMOSA/main.py --env_version v4 --lr 0.002 --hidden_dim 32 --time_dim 32 --meta_batch 256 --device cuda # <----> ablation commands # python exps/GeMOSA/main.py --env_version v1 --lr 0.002 --hidden_dim 16 --meta_batch 256 --ablation old --device cuda # python exps/GeMOSA/main.py --env_version v2 --lr 0.002 --hidden_dim 16 --meta_batch 256 --ablation old --device cuda # python exps/GeMOSA/main.py --env_version v3 --lr 0.002 --hidden_dim 32 --time_dim 32 --meta_batch 256 --ablation old --device cuda # python exps/GeMOSA/main.py --env_version v4 --lr 0.002 --hidden_dim 32 --time_dim 32 --meta_batch 256 --ablation old --device cuda ########################################################## import sys, time, copy, torch, random, argparse from tqdm import tqdm from copy import deepcopy from pathlib import Path from torch.nn import functional as F lib_dir = (Path(__file__).parent / ".." / "..").resolve() print("LIB-DIR: {:}".format(lib_dir)) if str(lib_dir) not in sys.path: sys.path.insert(0, str(lib_dir)) from xautodl.procedures import ( prepare_seed, prepare_logger, save_checkpoint, copy_checkpoint, ) from xautodl.log_utils import time_string from xautodl.log_utils import AverageMeter, convert_secs2time from xautodl.utils import split_str2indexes from xautodl.procedures.advanced_main import basic_train_fn, basic_eval_fn from xautodl.procedures.metric_utils import SaveMetric, MSEMetric, ComposeMetric from xautodl.datasets.synthetic_core import get_synthetic_env from xautodl.models.xcore import get_model from xautodl.procedures.metric_utils import MSEMetric, Top1AccMetric from meta_model import MetaModelV1 from meta_model_ablation import MetaModel_TraditionalAtt def online_evaluate( env, meta_model, base_model, criterion, metric, args, logger, save=False, easy_adapt=False, ): logger.log("Online evaluate: {:}".format(env)) metric.reset() loss_meter = AverageMeter() w_containers = dict() for idx, (future_time, (future_x, future_y)) in enumerate(env): with torch.no_grad(): meta_model.eval() base_model.eval() future_time_embed = meta_model.gen_time_embed( future_time.to(args.device).view(-1) ) [future_container] = meta_model.gen_model(future_time_embed) if save: w_containers[idx] = future_container.no_grad_clone() future_x, future_y = future_x.to(args.device), future_y.to(args.device) future_y_hat = base_model.forward_with_container(future_x, future_container) future_loss = criterion(future_y_hat, future_y) loss_meter.update(future_loss.item()) # accumulate the metric scores metric(future_y_hat, future_y) if easy_adapt: meta_model.easy_adapt(future_time.item(), future_time_embed) refine, post_refine_loss = False, -1 else: refine, post_refine_loss = meta_model.adapt( base_model, criterion, future_time.item(), future_x, future_y, args.refine_lr, args.refine_epochs, {"param": future_time_embed, "loss": future_loss.item()}, ) logger.log( "[ONLINE] [{:03d}/{:03d}] loss={:.4f}".format( idx, len(env), future_loss.item() ) + ", post-loss={:.4f}".format(post_refine_loss if refine else -1) ) meta_model.clear_fixed() meta_model.clear_learnt() return w_containers, loss_meter.avg, metric.get_info()["score"] def meta_train_procedure(base_model, meta_model, criterion, xenv, args, logger): base_model.train() meta_model.train() optimizer = torch.optim.Adam( meta_model.get_parameters(True, True, True), lr=args.lr, weight_decay=args.weight_decay, amsgrad=True, ) logger.log("Pre-train the meta-model") logger.log("Using the optimizer: {:}".format(optimizer)) meta_model.set_best_dir(logger.path(None) / "ckps-pretrain-v2") final_best_name = "final-pretrain-{:}.pth".format(args.rand_seed) if meta_model.has_best(final_best_name): meta_model.load_best(final_best_name) logger.log("Directly load the best model from {:}".format(final_best_name)) return total_indexes = list(range(meta_model.meta_length)) meta_model.set_best_name("pretrain-{:}.pth".format(args.rand_seed)) last_success_epoch, early_stop_thresh = 0, args.pretrain_early_stop_thresh per_epoch_time, start_time = AverageMeter(), time.time() device = args.device for iepoch in range(args.epochs): left_time = "Time Left: {:}".format( convert_secs2time(per_epoch_time.avg * (args.epochs - iepoch), True) ) optimizer.zero_grad() generated_time_embeds = meta_model.gen_time_embed(meta_model.meta_timestamps) batch_indexes = random.choices(total_indexes, k=args.meta_batch) raw_time_steps = meta_model.meta_timestamps[batch_indexes] regularization_loss = F.l1_loss( generated_time_embeds, meta_model.super_meta_embed, reduction="mean" ) # future loss total_future_losses, total_present_losses = [], [] future_containers = meta_model.gen_model(generated_time_embeds[batch_indexes]) present_containers = meta_model.gen_model( meta_model.super_meta_embed[batch_indexes] ) for ibatch, time_step in enumerate(raw_time_steps.cpu().tolist()): _, (inputs, targets) = xenv(time_step) inputs, targets = inputs.to(device), targets.to(device) predictions = base_model.forward_with_container( inputs, future_containers[ibatch] ) total_future_losses.append(criterion(predictions, targets)) predictions = base_model.forward_with_container( inputs, present_containers[ibatch] ) total_present_losses.append(criterion(predictions, targets)) with torch.no_grad(): meta_std = torch.stack(total_future_losses).std().item() loss_future = torch.stack(total_future_losses).mean() loss_present = torch.stack(total_present_losses).mean() total_loss = loss_future + loss_present + regularization_loss total_loss.backward() optimizer.step() # success success, best_score = meta_model.save_best(-total_loss.item()) logger.log( "{:} [META {:04d}/{:}] loss : {:.4f} +- {:.4f} = {:.4f} + {:.4f} + {:.4f}".format( time_string(), iepoch, args.epochs, total_loss.item(), meta_std, loss_future.item(), loss_present.item(), regularization_loss.item(), ) + ", batch={:}".format(len(total_future_losses)) + ", success={:}, best={:.4f}".format(success, -best_score) + ", LS={:}/{:}".format(iepoch - last_success_epoch, early_stop_thresh) + ", {:}".format(left_time) ) if success: last_success_epoch = iepoch if iepoch - last_success_epoch >= early_stop_thresh: logger.log("Early stop the pre-training at {:}".format(iepoch)) break per_epoch_time.update(time.time() - start_time) start_time = time.time() meta_model.load_best() # save to the final model meta_model.set_best_name(final_best_name) success, _ = meta_model.save_best(best_score + 1e-6) assert success logger.log("Save the best model into {:}".format(final_best_name)) def main(args): prepare_seed(args.rand_seed) logger = prepare_logger(args) train_env = get_synthetic_env(mode="train", version=args.env_version) valid_env = get_synthetic_env(mode="valid", version=args.env_version) trainval_env = get_synthetic_env(mode="trainval", version=args.env_version) test_env = get_synthetic_env(mode="test", version=args.env_version) all_env = get_synthetic_env(mode=None, version=args.env_version) logger.log("The training enviornment: {:}".format(train_env)) logger.log("The validation enviornment: {:}".format(valid_env)) logger.log("The trainval enviornment: {:}".format(trainval_env)) logger.log("The total enviornment: {:}".format(all_env)) logger.log("The test enviornment: {:}".format(test_env)) model_kwargs = dict( config=dict(model_type="norm_mlp"), input_dim=all_env.meta_info["input_dim"], output_dim=all_env.meta_info["output_dim"], hidden_dims=[args.hidden_dim] * 2, act_cls="relu", norm_cls="layer_norm_1d", ) base_model = get_model(**model_kwargs) base_model = base_model.to(args.device) if all_env.meta_info["task"] == "regression": criterion = torch.nn.MSELoss() metric = MSEMetric(True) elif all_env.meta_info["task"] == "classification": criterion = torch.nn.CrossEntropyLoss() metric = Top1AccMetric(True) else: raise ValueError( "This task ({:}) is not supported.".format(all_env.meta_info["task"]) ) shape_container = base_model.get_w_container().to_shape_container() # pre-train the hypernetwork timestamps = trainval_env.get_timestamp(None) if args.ablation is None: MetaModel_cls = MetaModelV1 elif args.ablation == "old": MetaModel_cls = MetaModel_TraditionalAtt else: raise ValueError("Unknown ablation : {:}".format(args.ablation)) meta_model = MetaModel_cls( shape_container, args.layer_dim, args.time_dim, timestamps, seq_length=args.seq_length, interval=trainval_env.time_interval, ) meta_model = meta_model.to(args.device) logger.log("The base-model has {:} weights.".format(base_model.numel())) logger.log("The meta-model has {:} weights.".format(meta_model.numel())) logger.log("The base-model is\n{:}".format(base_model)) logger.log("The meta-model is\n{:}".format(meta_model)) meta_train_procedure(base_model, meta_model, criterion, trainval_env, args, logger) # try to evaluate once # online_evaluate(train_env, meta_model, base_model, criterion, args, logger) # online_evaluate(valid_env, meta_model, base_model, criterion, args, logger) """ w_containers, loss_meter = online_evaluate( all_env, meta_model, base_model, criterion, args, logger, True ) logger.log("In this enviornment, the total loss-meter is {:}".format(loss_meter)) """ <<<<<<< HEAD _, loss_adapt_v1, metric_adapt_v1 = online_evaluate( test_env, meta_model, base_model, criterion, metric, args, logger, False, False ) _, loss_adapt_v2, metric_adapt_v2 = online_evaluate( test_env, meta_model, base_model, criterion, metric, args, logger, False, True ======= w_containers_care_adapt, loss_adapt_v1, metric_adapt_v1 = online_evaluate( valid_env, meta_model, base_model, criterion, metric, args, logger, True, False ) w_containers_easy_adapt, loss_adapt_v2, metric_adapt_v2 = online_evaluate( valid_env, meta_model, base_model, criterion, metric, args, logger, True, True >>>>>>> d4b846a9717279c08f1264398972c00aa949a69f ) logger.log( "[Refine-Adapt] loss = {:.6f}, metric = {:.6f}".format( loss_adapt_v1, metric_adapt_v1 ) ) logger.log( "[Easy-Adapt] loss = {:.6f}, metric = {:.6f}".format( loss_adapt_v2, metric_adapt_v2 ) ) save_checkpoint( { "w_containers_care_adapt": w_containers_care_adapt, "w_containers_easy_adapt": w_containers_easy_adapt, "test_loss_adapt_v1": loss_adapt_v1, "test_loss_adapt_v2": loss_adapt_v2, "test_metric_adapt_v1": metric_adapt_v1, "test_metric_adapt_v2": metric_adapt_v2, }, logger.path(None) / "final-ckp-{:}.pth".format(args.rand_seed), logger, ) logger.log("-" * 200 + "\n") logger.close() if __name__ == "__main__": parser = argparse.ArgumentParser(".") parser.add_argument( "--save_dir", type=str, default="./outputs/GeMOSA-synthetic/GeMOSA", help="The checkpoint directory.", ) parser.add_argument( "--env_version", type=str, required=True, help="The synthetic enviornment version.", ) parser.add_argument( "--hidden_dim", type=int, default=16, help="The hidden dimension.", ) parser.add_argument( "--layer_dim", type=int, default=16, help="The layer chunk dimension.", ) parser.add_argument( "--time_dim", type=int, default=16, help="The timestamp dimension.", ) ##### parser.add_argument( "--lr", type=float, default=0.002, help="The initial learning rate for the optimizer (default is Adam)", ) parser.add_argument( "--weight_decay", type=float, default=0.00001, help="The weight decay for the optimizer (default is Adam)", ) parser.add_argument( "--meta_batch", type=int, default=64, help="The batch size for the meta-model", ) parser.add_argument( "--sampler_enlarge", type=int, default=5, help="Enlarge the #iterations for an epoch", ) parser.add_argument("--epochs", type=int, default=10000, help="The total #epochs.") parser.add_argument( "--refine_lr", type=float, default=0.001, help="The learning rate for the optimizer, during refine", ) parser.add_argument( "--refine_epochs", type=int, default=150, help="The final refine #epochs." ) parser.add_argument( "--early_stop_thresh", type=int, default=20, help="The #epochs for early stop.", ) parser.add_argument( "--pretrain_early_stop_thresh", type=int, default=300, help="The #epochs for early stop.", ) parser.add_argument( "--seq_length", type=int, default=10, help="The sequence length." ) parser.add_argument( "--workers", type=int, default=4, help="The number of workers in parallel." ) parser.add_argument( "--ablation", type=str, default=None, help="The ablation indicator." ) parser.add_argument( "--device", type=str, default="cpu", help="", ) # Random Seed parser.add_argument("--rand_seed", type=int, default=-1, help="manual seed") args = parser.parse_args() if args.rand_seed is None or args.rand_seed < 0: args.rand_seed = random.randint(1, 100000) assert args.save_dir is not None, "The save dir argument can not be None" args.save_dir = "{:}-bs{:}-d{:}_{:}_{:}-s{:}-lr{:}-wd{:}-e{:}-ab{:}-env{:}".format( args.save_dir, args.meta_batch, args.hidden_dim, args.layer_dim, args.time_dim, args.seq_length, args.lr, args.weight_decay, args.epochs, args.ablation, args.env_version, ) main(args)