################################################## # Copyright (c) Xuanyi Dong [GitHub D-X-Y], 2020 # ###################################################################################### # One-Shot Neural Architecture Search via Self-Evaluated Template Network, ICCV 2019 # ###################################################################################### import sys, time, random, argparse import numpy as np from copy import deepcopy import torch import torch.nn as nn from pathlib import Path from xautodl.config_utils import load_config, dict2config, configure2str from xautodl.datasets import get_datasets, get_nas_search_loaders from xautodl.procedures import ( prepare_seed, prepare_logger, save_checkpoint, copy_checkpoint, get_optim_scheduler, ) from xautodl.utils import get_model_infos, obtain_accuracy from xautodl.log_utils import AverageMeter, time_string, convert_secs2time from xautodl.models import get_cell_based_tiny_net, get_search_spaces from nas_201_api import NASBench201API as API def search_func( xloader, network, criterion, scheduler, w_optimizer, a_optimizer, epoch_str, print_freq, logger, ): data_time, batch_time = AverageMeter(), AverageMeter() base_losses, base_top1, base_top5 = AverageMeter(), AverageMeter(), AverageMeter() arch_losses, arch_top1, arch_top5 = AverageMeter(), AverageMeter(), AverageMeter() end = time.time() network.train() for step, (base_inputs, base_targets, arch_inputs, arch_targets) in enumerate( xloader ): scheduler.update(None, 1.0 * step / len(xloader)) base_targets = base_targets.cuda(non_blocking=True) arch_targets = arch_targets.cuda(non_blocking=True) # measure data loading time data_time.update(time.time() - end) # update the weights sampled_arch = network.module.dync_genotype(True) network.module.set_cal_mode("dynamic", sampled_arch) # network.module.set_cal_mode( 'urs' ) network.zero_grad() _, logits = network(base_inputs) base_loss = criterion(logits, base_targets) base_loss.backward() w_optimizer.step() # record base_prec1, base_prec5 = obtain_accuracy( logits.data, base_targets.data, topk=(1, 5) ) base_losses.update(base_loss.item(), base_inputs.size(0)) base_top1.update(base_prec1.item(), base_inputs.size(0)) base_top5.update(base_prec5.item(), base_inputs.size(0)) # update the architecture-weight network.module.set_cal_mode("joint") network.zero_grad() _, logits = network(arch_inputs) arch_loss = criterion(logits, arch_targets) arch_loss.backward() a_optimizer.step() # record arch_prec1, arch_prec5 = obtain_accuracy( logits.data, arch_targets.data, topk=(1, 5) ) arch_losses.update(arch_loss.item(), arch_inputs.size(0)) arch_top1.update(arch_prec1.item(), arch_inputs.size(0)) arch_top5.update(arch_prec5.item(), arch_inputs.size(0)) # measure elapsed time batch_time.update(time.time() - end) end = time.time() if step % print_freq == 0 or step + 1 == len(xloader): Sstr = ( "*SEARCH* " + time_string() + " [{:}][{:03d}/{:03d}]".format(epoch_str, step, len(xloader)) ) Tstr = "Time {batch_time.val:.2f} ({batch_time.avg:.2f}) Data {data_time.val:.2f} ({data_time.avg:.2f})".format( batch_time=batch_time, data_time=data_time ) Wstr = "Base [Loss {loss.val:.3f} ({loss.avg:.3f}) Prec@1 {top1.val:.2f} ({top1.avg:.2f}) Prec@5 {top5.val:.2f} ({top5.avg:.2f})]".format( loss=base_losses, top1=base_top1, top5=base_top5 ) Astr = "Arch [Loss {loss.val:.3f} ({loss.avg:.3f}) Prec@1 {top1.val:.2f} ({top1.avg:.2f}) Prec@5 {top5.val:.2f} ({top5.avg:.2f})]".format( loss=arch_losses, top1=arch_top1, top5=arch_top5 ) logger.log(Sstr + " " + Tstr + " " + Wstr + " " + Astr) # print (nn.functional.softmax(network.module.arch_parameters, dim=-1)) # print (network.module.arch_parameters) return ( base_losses.avg, base_top1.avg, base_top5.avg, arch_losses.avg, arch_top1.avg, arch_top5.avg, ) def get_best_arch(xloader, network, n_samples): with torch.no_grad(): network.eval() archs, valid_accs = network.module.return_topK(n_samples), [] # print ('obtain the top-{:} architectures'.format(n_samples)) loader_iter = iter(xloader) for i, sampled_arch in enumerate(archs): network.module.set_cal_mode("dynamic", sampled_arch) try: inputs, targets = next(loader_iter) except: loader_iter = iter(xloader) inputs, targets = next(loader_iter) _, logits = network(inputs) val_top1, val_top5 = obtain_accuracy( logits.cpu().data, targets.data, topk=(1, 5) ) valid_accs.append(val_top1.item()) best_idx = np.argmax(valid_accs) best_arch, best_valid_acc = archs[best_idx], valid_accs[best_idx] return best_arch, best_valid_acc def valid_func(xloader, network, criterion): data_time, batch_time = AverageMeter(), AverageMeter() arch_losses, arch_top1, arch_top5 = AverageMeter(), AverageMeter(), AverageMeter() end = time.time() with torch.no_grad(): network.eval() for step, (arch_inputs, arch_targets) in enumerate(xloader): arch_targets = arch_targets.cuda(non_blocking=True) # measure data loading time data_time.update(time.time() - end) # prediction _, logits = network(arch_inputs) arch_loss = criterion(logits, arch_targets) # record arch_prec1, arch_prec5 = obtain_accuracy( logits.data, arch_targets.data, topk=(1, 5) ) arch_losses.update(arch_loss.item(), arch_inputs.size(0)) arch_top1.update(arch_prec1.item(), arch_inputs.size(0)) arch_top5.update(arch_prec5.item(), arch_inputs.size(0)) # measure elapsed time batch_time.update(time.time() - end) end = time.time() return arch_losses.avg, arch_top1.avg, arch_top5.avg def main(xargs): assert torch.cuda.is_available(), "CUDA is not available." torch.backends.cudnn.enabled = True torch.backends.cudnn.benchmark = False torch.backends.cudnn.deterministic = True torch.set_num_threads(xargs.workers) prepare_seed(xargs.rand_seed) logger = prepare_logger(args) train_data, valid_data, xshape, class_num = get_datasets( xargs.dataset, xargs.data_path, -1 ) config = load_config( xargs.config_path, {"class_num": class_num, "xshape": xshape}, logger ) search_loader, _, valid_loader = get_nas_search_loaders( train_data, valid_data, xargs.dataset, "configs/nas-benchmark/", (config.batch_size, config.test_batch_size), xargs.workers, ) logger.log( "||||||| {:10s} ||||||| Search-Loader-Num={:}, Valid-Loader-Num={:}, batch size={:}".format( xargs.dataset, len(search_loader), len(valid_loader), config.batch_size ) ) logger.log("||||||| {:10s} ||||||| Config={:}".format(xargs.dataset, config)) search_space = get_search_spaces("cell", xargs.search_space_name) if xargs.model_config is None: model_config = dict2config( dict( name="SETN", C=xargs.channel, N=xargs.num_cells, max_nodes=xargs.max_nodes, num_classes=class_num, space=search_space, affine=False, track_running_stats=bool(xargs.track_running_stats), ), None, ) else: model_config = load_config( xargs.model_config, dict( num_classes=class_num, space=search_space, affine=False, track_running_stats=bool(xargs.track_running_stats), ), None, ) logger.log("search space : {:}".format(search_space)) search_model = get_cell_based_tiny_net(model_config) w_optimizer, w_scheduler, criterion = get_optim_scheduler( search_model.get_weights(), config ) a_optimizer = torch.optim.Adam( search_model.get_alphas(), lr=xargs.arch_learning_rate, betas=(0.5, 0.999), weight_decay=xargs.arch_weight_decay, ) logger.log("w-optimizer : {:}".format(w_optimizer)) logger.log("a-optimizer : {:}".format(a_optimizer)) logger.log("w-scheduler : {:}".format(w_scheduler)) logger.log("criterion : {:}".format(criterion)) flop, param = get_model_infos(search_model, xshape) logger.log("FLOP = {:.2f} M, Params = {:.2f} MB".format(flop, param)) logger.log("search-space : {:}".format(search_space)) if xargs.arch_nas_dataset is None: api = None else: api = API(xargs.arch_nas_dataset) logger.log("{:} create API = {:} done".format(time_string(), api)) last_info, model_base_path, model_best_path = ( logger.path("info"), logger.path("model"), logger.path("best"), ) network, criterion = torch.nn.DataParallel(search_model).cuda(), criterion.cuda() if last_info.exists(): # automatically resume from previous checkpoint logger.log( "=> loading checkpoint of the last-info '{:}' start".format(last_info) ) last_info = torch.load(last_info) start_epoch = last_info["epoch"] checkpoint = torch.load(last_info["last_checkpoint"]) genotypes = checkpoint["genotypes"] valid_accuracies = checkpoint["valid_accuracies"] search_model.load_state_dict(checkpoint["search_model"]) w_scheduler.load_state_dict(checkpoint["w_scheduler"]) w_optimizer.load_state_dict(checkpoint["w_optimizer"]) a_optimizer.load_state_dict(checkpoint["a_optimizer"]) logger.log( "=> loading checkpoint of the last-info '{:}' start with {:}-th epoch.".format( last_info, start_epoch ) ) else: logger.log("=> do not find the last-info file : {:}".format(last_info)) init_genotype, _ = get_best_arch(valid_loader, network, xargs.select_num) start_epoch, valid_accuracies, genotypes = 0, {"best": -1}, {-1: init_genotype} # start training start_time, search_time, epoch_time, total_epoch = ( time.time(), AverageMeter(), AverageMeter(), config.epochs + config.warmup, ) for epoch in range(start_epoch, total_epoch): w_scheduler.update(epoch, 0.0) need_time = "Time Left: {:}".format( convert_secs2time(epoch_time.val * (total_epoch - epoch), True) ) epoch_str = "{:03d}-{:03d}".format(epoch, total_epoch) logger.log( "\n[Search the {:}-th epoch] {:}, LR={:}".format( epoch_str, need_time, min(w_scheduler.get_lr()) ) ) ( search_w_loss, search_w_top1, search_w_top5, search_a_loss, search_a_top1, search_a_top5, ) = search_func( search_loader, network, criterion, w_scheduler, w_optimizer, a_optimizer, epoch_str, xargs.print_freq, logger, ) search_time.update(time.time() - start_time) logger.log( "[{:}] search [base] : loss={:.2f}, accuracy@1={:.2f}%, accuracy@5={:.2f}%, time-cost={:.1f} s".format( epoch_str, search_w_loss, search_w_top1, search_w_top5, search_time.sum ) ) logger.log( "[{:}] search [arch] : loss={:.2f}, accuracy@1={:.2f}%, accuracy@5={:.2f}%".format( epoch_str, search_a_loss, search_a_top1, search_a_top5 ) ) genotype, temp_accuracy = get_best_arch(valid_loader, network, xargs.select_num) network.module.set_cal_mode("dynamic", genotype) valid_a_loss, valid_a_top1, valid_a_top5 = valid_func( valid_loader, network, criterion ) logger.log( "[{:}] evaluate : loss={:.2f}, accuracy@1={:.2f}%, accuracy@5={:.2f}% | {:}".format( epoch_str, valid_a_loss, valid_a_top1, valid_a_top5, genotype ) ) # search_model.set_cal_mode('urs') # valid_a_loss , valid_a_top1 , valid_a_top5 = valid_func(valid_loader, network, criterion) # logger.log('[{:}] URS---evaluate : loss={:.2f}, accuracy@1={:.2f}%, accuracy@5={:.2f}%'.format(epoch_str, valid_a_loss, valid_a_top1, valid_a_top5)) # search_model.set_cal_mode('joint') # valid_a_loss , valid_a_top1 , valid_a_top5 = valid_func(valid_loader, network, criterion) # logger.log('[{:}] JOINT-evaluate : loss={:.2f}, accuracy@1={:.2f}%, accuracy@5={:.2f}%'.format(epoch_str, valid_a_loss, valid_a_top1, valid_a_top5)) # search_model.set_cal_mode('select') # valid_a_loss , valid_a_top1 , valid_a_top5 = valid_func(valid_loader, network, criterion) # logger.log('[{:}] Selec-evaluate : loss={:.2f}, accuracy@1={:.2f}%, accuracy@5={:.2f}%'.format(epoch_str, valid_a_loss, valid_a_top1, valid_a_top5)) # check the best accuracy valid_accuracies[epoch] = valid_a_top1 genotypes[epoch] = genotype logger.log( "<<<--->>> The {:}-th epoch : {:}".format(epoch_str, genotypes[epoch]) ) # save checkpoint save_path = save_checkpoint( { "epoch": epoch + 1, "args": deepcopy(xargs), "search_model": search_model.state_dict(), "w_optimizer": w_optimizer.state_dict(), "a_optimizer": a_optimizer.state_dict(), "w_scheduler": w_scheduler.state_dict(), "genotypes": genotypes, "valid_accuracies": valid_accuracies, }, model_base_path, logger, ) last_info = save_checkpoint( { "epoch": epoch + 1, "args": deepcopy(args), "last_checkpoint": save_path, }, logger.path("info"), logger, ) with torch.no_grad(): logger.log("{:}".format(search_model.show_alphas())) if api is not None: logger.log("{:}".format(api.query_by_arch(genotypes[epoch], "200"))) # measure elapsed time epoch_time.update(time.time() - start_time) start_time = time.time() # the final post procedure : count the time start_time = time.time() genotype, temp_accuracy = get_best_arch(valid_loader, network, xargs.select_num) search_time.update(time.time() - start_time) network.module.set_cal_mode("dynamic", genotype) valid_a_loss, valid_a_top1, valid_a_top5 = valid_func( valid_loader, network, criterion ) logger.log( "Last : the gentotype is : {:}, with the validation accuracy of {:.3f}%.".format( genotype, valid_a_top1 ) ) logger.log("\n" + "-" * 100) # check the performance from the architecture dataset logger.log( "SETN : run {:} epochs, cost {:.1f} s, last-geno is {:}.".format( total_epoch, search_time.sum, genotype ) ) if api is not None: logger.log("{:}".format(api.query_by_arch(genotype, "200"))) logger.close() if __name__ == "__main__": parser = argparse.ArgumentParser("SETN") parser.add_argument("--data_path", type=str, help="Path to dataset") parser.add_argument( "--dataset", type=str, choices=["cifar10", "cifar100", "ImageNet16-120"], help="Choose between Cifar10/100 and ImageNet-16.", ) # channels and number-of-cells parser.add_argument("--search_space_name", type=str, help="The search space name.") parser.add_argument("--max_nodes", type=int, help="The maximum number of nodes.") parser.add_argument("--channel", type=int, help="The number of channels.") parser.add_argument( "--num_cells", type=int, help="The number of cells in one stage." ) parser.add_argument( "--select_num", type=int, help="The number of selected architectures to evaluate.", ) parser.add_argument( "--track_running_stats", type=int, choices=[0, 1], help="Whether use track_running_stats or not in the BN layer.", ) parser.add_argument( "--config_path", type=str, help="The path of the configuration." ) # architecture leraning rate parser.add_argument( "--arch_learning_rate", type=float, default=3e-4, help="learning rate for arch encoding", ) parser.add_argument( "--arch_weight_decay", type=float, default=1e-3, help="weight decay for arch encoding", ) # log parser.add_argument( "--workers", type=int, default=2, help="number of data loading workers (default: 2)", ) parser.add_argument( "--save_dir", type=str, help="Folder to save checkpoints and log." ) parser.add_argument( "--arch_nas_dataset", type=str, help="The path to load the architecture dataset (tiny-nas-benchmark).", ) parser.add_argument("--print_freq", type=int, help="print frequency (default: 200)") parser.add_argument("--rand_seed", type=int, help="manual seed") args = parser.parse_args() if args.rand_seed is None or args.rand_seed < 0: args.rand_seed = random.randint(1, 100000) main(args)