##################################################### # Learning to Generate Model One Step Ahead # ##################################################### # python exps/GMOA/lfna.py --env_version v1 --workers 0 # python exps/GMOA/lfna.py --env_version v1 --device cuda --lr 0.001 # python exps/GMOA/lfna.py --env_version v1 --device cuda --lr 0.002 --seq_length 16 --meta_batch 128 # python exps/GMOA/lfna.py --env_version v1 --device cuda --lr 0.002 --seq_length 24 --time_dim 32 --meta_batch 128 ##################################################### import pdb, sys, time, copy, torch, random, argparse from tqdm import tqdm from copy import deepcopy from pathlib import Path lib_dir = (Path(__file__).parent / ".." / "..").resolve() print("LIB-DIR: {:}".format(lib_dir)) if str(lib_dir) not in sys.path: sys.path.insert(0, str(lib_dir)) from xautodl.procedures import ( prepare_seed, prepare_logger, save_checkpoint, copy_checkpoint, ) from xautodl.log_utils import time_string from xautodl.log_utils import AverageMeter, convert_secs2time from xautodl.utils import split_str2indexes from xautodl.procedures.advanced_main import basic_train_fn, basic_eval_fn from xautodl.procedures.metric_utils import SaveMetric, MSEMetric, ComposeMetric from xautodl.datasets.synthetic_core import get_synthetic_env from xautodl.models.xcore import get_model from xautodl.xlayers import super_core, trunc_normal_ from lfna_utils import lfna_setup, train_model, TimeData from lfna_meta_model import MetaModelV1 def epoch_train(loader, meta_model, base_model, optimizer, criterion, device, logger): base_model.train() meta_model.train() loss_meter = AverageMeter() for ibatch, batch_data in enumerate(loader): timestamps, (batch_seq_inputs, batch_seq_targets) = batch_data timestamps = timestamps.squeeze(dim=-1).to(device) batch_seq_inputs = batch_seq_inputs.to(device) batch_seq_targets = batch_seq_targets.to(device) optimizer.zero_grad() batch_seq_containers = meta_model(timestamps) losses = [] for seq_containers, seq_inputs, seq_targets in zip( batch_seq_containers, batch_seq_inputs, batch_seq_targets ): for container, inputs, targets in zip( seq_containers, seq_inputs, seq_targets ): predictions = base_model.forward_with_container(inputs, container) loss = criterion(predictions, targets) losses.append(loss) final_loss = torch.stack(losses).mean() final_loss.backward() optimizer.step() loss_meter.update(final_loss.item()) return loss_meter def epoch_evaluate(loader, meta_model, base_model, criterion, device, logger): with torch.no_grad(): base_model.eval() meta_model.eval() loss_meter = AverageMeter() for ibatch, batch_data in enumerate(loader): timestamps, (batch_seq_inputs, batch_seq_targets) = batch_data timestamps = timestamps.squeeze(dim=-1).to(device) batch_seq_inputs = batch_seq_inputs.to(device) batch_seq_targets = batch_seq_targets.to(device) batch_seq_containers = meta_model(timestamps) losses = [] for seq_containers, seq_inputs, seq_targets in zip( batch_seq_containers, batch_seq_inputs, batch_seq_targets ): for container, inputs, targets in zip( seq_containers, seq_inputs, seq_targets ): predictions = base_model.forward_with_container(inputs, container) loss = criterion(predictions, targets) losses.append(loss) final_loss = torch.stack(losses).mean() loss_meter.update(final_loss.item()) return loss_meter def online_evaluate(env, meta_model, base_model, criterion, args, logger, save=False): logger.log("Online evaluate: {:}".format(env)) loss_meter = AverageMeter() w_containers = dict() for idx, (future_time, (future_x, future_y)) in enumerate(env): with torch.no_grad(): meta_model.eval() base_model.eval() _, [future_container], time_embeds = meta_model( future_time.to(args.device).view(1, 1), None, True ) if save: w_containers[idx] = future_container.no_grad_clone() future_x, future_y = future_x.to(args.device), future_y.to(args.device) future_y_hat = base_model.forward_with_container(future_x, future_container) future_loss = criterion(future_y_hat, future_y) loss_meter.update(future_loss.item()) refine, post_refine_loss = meta_model.adapt( base_model, criterion, future_time.item(), future_x, future_y, args.refine_lr, args.refine_epochs, {"param": time_embeds, "loss": future_loss.item()}, ) logger.log( "[ONLINE] [{:03d}/{:03d}] loss={:.4f}".format( idx, len(env), future_loss.item() ) + ", post-loss={:.4f}".format(post_refine_loss if refine else -1) ) meta_model.clear_fixed() meta_model.clear_learnt() return w_containers, loss_meter def pretrain_v2(base_model, meta_model, criterion, xenv, args, logger): base_model.train() meta_model.train() optimizer = torch.optim.Adam( meta_model.get_parameters(True, True, True), lr=args.lr, weight_decay=args.weight_decay, amsgrad=True, ) logger.log("Pre-train the meta-model") logger.log("Using the optimizer: {:}".format(optimizer)) meta_model.set_best_dir(logger.path(None) / "ckps-pretrain-v2") final_best_name = "final-pretrain-{:}.pth".format(args.rand_seed) if meta_model.has_best(final_best_name): meta_model.load_best(final_best_name) logger.log("Directly load the best model from {:}".format(final_best_name)) return meta_model.set_best_name("pretrain-{:}.pth".format(args.rand_seed)) last_success_epoch, early_stop_thresh = 0, args.pretrain_early_stop_thresh per_epoch_time, start_time = AverageMeter(), time.time() device = args.device for iepoch in range(args.epochs): left_time = "Time Left: {:}".format( convert_secs2time(per_epoch_time.avg * (args.epochs - iepoch), True) ) total_meta_v1_losses, total_meta_v2_losses, total_match_losses = [], [], [] optimizer.zero_grad() for ibatch in range(args.meta_batch): rand_index = random.randint(0, meta_model.meta_length - 1) timestamp = meta_model.meta_timestamps[rand_index] meta_embed = meta_model.super_meta_embed[rand_index] _, [container], time_embed = meta_model( torch.unsqueeze(timestamp, dim=0), None, True ) _, (inputs, targets) = xenv(timestamp.item()) inputs, targets = inputs.to(device), targets.to(device) # generate models one step ahead predictions = base_model.forward_with_container(inputs, container) total_meta_v1_losses.append(criterion(predictions, targets)) # the matching loss match_loss = criterion(torch.squeeze(time_embed, dim=0), meta_embed) total_match_losses.append(match_loss) # generate models via memory _, [container], _ = meta_model(None, meta_embed.view(1, 1, -1), True) predictions = base_model.forward_with_container(inputs, container) total_meta_v2_losses.append(criterion(predictions, targets)) with torch.no_grad(): meta_std = torch.stack(total_meta_v1_losses).std().item() meta_v1_loss = torch.stack(total_meta_v1_losses).mean() meta_v2_loss = torch.stack(total_meta_v2_losses).mean() match_loss = torch.stack(total_match_losses).mean() total_loss = meta_v1_loss + meta_v2_loss + match_loss total_loss.backward() optimizer.step() # success success, best_score = meta_model.save_best(-total_loss.item()) logger.log( "{:} [Pre-V2 {:04d}/{:}] loss : {:.4f} +- {:.4f} = {:.4f} + {:.4f} + {:.4f} (match)".format( time_string(), iepoch, args.epochs, total_loss.item(), meta_std, meta_v1_loss.item(), meta_v2_loss.item(), match_loss.item(), ) + ", batch={:}".format(len(total_meta_v1_losses)) + ", success={:}, best={:.4f}".format(success, -best_score) + ", LS={:}/{:}".format(iepoch - last_success_epoch, early_stop_thresh) + ", {:}".format(left_time) ) if success: last_success_epoch = iepoch if iepoch - last_success_epoch >= early_stop_thresh: logger.log("Early stop the pre-training at {:}".format(iepoch)) break per_epoch_time.update(time.time() - start_time) start_time = time.time() meta_model.load_best() # save to the final model meta_model.set_best_name(final_best_name) success, _ = meta_model.save_best(best_score + 1e-6) assert success logger.log("Save the best model into {:}".format(final_best_name)) def main(args): logger, model_kwargs = lfna_setup(args) train_env = get_synthetic_env(mode="train", version=args.env_version) valid_env = get_synthetic_env(mode="valid", version=args.env_version) trainval_env = get_synthetic_env(mode="trainval", version=args.env_version) all_env = get_synthetic_env(mode=None, version=args.env_version) logger.log("The training enviornment: {:}".format(train_env)) logger.log("The validation enviornment: {:}".format(valid_env)) logger.log("The trainval enviornment: {:}".format(trainval_env)) logger.log("The total enviornment: {:}".format(all_env)) base_model = get_model(**model_kwargs) base_model = base_model.to(args.device) criterion = torch.nn.MSELoss() shape_container = base_model.get_w_container().to_shape_container() # pre-train the hypernetwork timestamps = trainval_env.get_timestamp(None) meta_model = MetaModelV1( shape_container, args.layer_dim, args.time_dim, timestamps, seq_length=args.seq_length, interval=trainval_env.time_interval, ) meta_model = meta_model.to(args.device) logger.log("The base-model has {:} weights.".format(base_model.numel())) logger.log("The meta-model has {:} weights.".format(meta_model.numel())) logger.log("The base-model is\n{:}".format(base_model)) logger.log("The meta-model is\n{:}".format(meta_model)) pretrain_v2(base_model, meta_model, criterion, trainval_env, args, logger) # try to evaluate once # online_evaluate(train_env, meta_model, base_model, criterion, args, logger) # online_evaluate(valid_env, meta_model, base_model, criterion, args, logger) w_containers, loss_meter = online_evaluate( all_env, meta_model, base_model, criterion, args, logger, True ) logger.log("In this enviornment, the loss-meter is {:}".format(loss_meter)) save_checkpoint( {"w_containers": w_containers}, logger.path(None) / "final-ckp.pth", logger, ) logger.log("-" * 200 + "\n") logger.close() if __name__ == "__main__": parser = argparse.ArgumentParser(".") parser.add_argument( "--save_dir", type=str, default="./outputs/lfna-synthetic/lfna-battle", help="The checkpoint directory.", ) parser.add_argument( "--env_version", type=str, required=True, help="The synthetic enviornment version.", ) parser.add_argument( "--hidden_dim", type=int, default=16, help="The hidden dimension.", ) parser.add_argument( "--layer_dim", type=int, default=16, help="The layer chunk dimension.", ) parser.add_argument( "--time_dim", type=int, default=16, help="The timestamp dimension.", ) ##### parser.add_argument( "--lr", type=float, default=0.002, help="The initial learning rate for the optimizer (default is Adam)", ) parser.add_argument( "--weight_decay", type=float, default=0.00001, help="The weight decay for the optimizer (default is Adam)", ) parser.add_argument( "--meta_batch", type=int, default=64, help="The batch size for the meta-model", ) parser.add_argument( "--sampler_enlarge", type=int, default=5, help="Enlarge the #iterations for an epoch", ) parser.add_argument("--epochs", type=int, default=10000, help="The total #epochs.") parser.add_argument( "--refine_lr", type=float, default=0.002, help="The learning rate for the optimizer, during refine", ) parser.add_argument( "--refine_epochs", type=int, default=100, help="The final refine #epochs." ) parser.add_argument( "--early_stop_thresh", type=int, default=20, help="The #epochs for early stop.", ) parser.add_argument( "--pretrain_early_stop_thresh", type=int, default=300, help="The #epochs for early stop.", ) parser.add_argument( "--seq_length", type=int, default=10, help="The sequence length." ) parser.add_argument( "--workers", type=int, default=4, help="The number of workers in parallel." ) parser.add_argument( "--device", type=str, default="cpu", help="", ) # Random Seed parser.add_argument("--rand_seed", type=int, default=-1, help="manual seed") args = parser.parse_args() if args.rand_seed is None or args.rand_seed < 0: args.rand_seed = random.randint(1, 100000) assert args.save_dir is not None, "The save dir argument can not be None" args.save_dir = "{:}-bs{:}-d{:}_{:}_{:}-s{:}-lr{:}-wd{:}-e{:}-env{:}".format( args.save_dir, args.meta_batch, args.hidden_dim, args.layer_dim, args.time_dim, args.seq_length, args.lr, args.weight_decay, args.epochs, args.env_version, ) main(args)