# Nueral Architecture Search (NAS)
This project contains the following neural architecture search algorithms, implemented in [PyTorch](http://pytorch.org). More NAS resources can be found in [Awesome-NAS](https://github.com/D-X-Y/Awesome-NAS).
- Network Pruning via Transformable Architecture Search, NeurIPS 2019
- One-Shot Neural Architecture Search via Self-Evaluated Template Network, ICCV 2019
- Searching for A Robust Neural Architecture in Four GPU Hours, CVPR 2019
## Requirements and Preparation
Please install `PyTorch>=1.0.1`, `Python>=3.6`, and `opencv`.
The CIFAR and ImageNet should be downloaded and extracted into `$TORCH_HOME`.
Some methods use knowledge distillation (KD), which require pre-trained models. Please download these models from [Google Driver](https://drive.google.com/open?id=1ANmiYEGX-IQZTfH8w0aSpj-Wypg-0DR-) (or train by yourself) and save into `.latent-data`.
## [Network Pruning via Transformable Architecture Search](https://arxiv.org/abs/1905.09717)
In this paper, we proposed a differentiable searching strategy for transformable architectures, i.e., searching for the depth and width of a deep neural network.
You could see the highlight of our Transformable Architecture Search (TAS) at our [project page](https://xuanyidong.com/assets/projects/NeurIPS-2019-TAS.html).
### Usage
Use `bash ./scripts/prepare.sh` to prepare data splits for `CIFAR-10`, `CIFARR-100`, and `ILSVRC2012`.
If you do not have `ILSVRC2012` data, pleasee comment L12 in `./scripts/prepare.sh`.
Search the depth configuration of ResNet:
```
CUDA_VISIBLE_DEVICES=0,1 bash ./scripts-search/search-depth-gumbel.sh cifar10 ResNet110 CIFARX 0.57 -1
```
Search the width configuration of ResNet:
```
CUDA_VISIBLE_DEVICES=0,1 bash ./scripts-search/search-width-gumbel.sh cifar10 ResNet110 CIFARX 0.57 -1
```
Search for both depth and width configuration of ResNet:
```
CUDA_VISIBLE_DEVICES=0,1 bash ./scripts-search/search-cifar.sh cifar10 ResNet56 CIFARX 0.47 -1
```
args: `cifar10` indicates the dataset name, `ResNet56` indicates the basemodel name, `CIFARX` indicates the searching hyper-parameters, `0.47/0.57` indicates the expected FLOP ratio, `-1` indicates the random seed.
## One-Shot Neural Architecture Search via Self-Evaluated Template Network
Highlight: we equip one-shot NAS with an architecture sampler and train network weights using uniformly sampling.
### Usage
Please use the following scripts to train the searched SETN-searched CNN on CIFAR-10, CIFAR-100, and ImageNet.
```
CUDA_VISIBLE_DEVICES=0 bash ./scripts/nas-infer-train.sh cifar10 SETN 96 -1
CUDA_VISIBLE_DEVICES=0 bash ./scripts/nas-infer-train.sh cifar100 SETN 96 -1
CUDA_VISIBLE_DEVICES=0,1,2,3 bash ./scripts/nas-infer-train.sh imagenet-1k SETN 256 -1
```
Searching codes come soon!
## [Searching for A Robust Neural Architecture in Four GPU Hours](http://openaccess.thecvf.com/content_CVPR_2019/papers/Dong_Searching_for_a_Robust_Neural_Architecture_in_Four_GPU_Hours_CVPR_2019_paper.pdf)
We proposed a Gradient-based searching algorithm using Differentiable Architecture Sampling (GDAS). GDAS is baseed on DARTS and improves it with Gumbel-softmax sampling.
Experiments on CIFAR-10, CIFAR-100, ImageNet, PTB, and WT2 are reported.
The old version is located at [`others/GDAS`](https://github.com/D-X-Y/NAS-Projects/tree/master/others/GDAS) and a paddlepaddle implementation is locate at [`others/paddlepaddle`](https://github.com/D-X-Y/NAS-Projects/tree/master/others/paddlepaddle).
### Usage
Please use the following scripts to train the searched GDAS-searched CNN on CIFAR-10, CIFAR-100, and ImageNet.
```
CUDA_VISIBLE_DEVICES=0 bash ./scripts/nas-infer-train.sh cifar10 GDAS_V1 96 -1
CUDA_VISIBLE_DEVICES=0 bash ./scripts/nas-infer-train.sh cifar100 GDAS_V1 96 -1
CUDA_VISIBLE_DEVICES=0,1,2,3 bash ./scripts/nas-infer-train.sh imagenet-1k GDAS_V1 256 -1
```
Searching codes come soon! A small example forward code segment for searching can be found in [this issue](https://github.com/D-X-Y/NAS-Projects/issues/12).
# Citation
If you find that this project helps your research, please consider citing some of the following papers:
```
@inproceedings{dong2019tas,
title = {Network Pruning via Transformable Architecture Search},
author = {Dong, Xuanyi and Yang, Yi},
booktitle = {Neural Information Processing Systems (NeurIPS)},
year = {2019}
}
@inproceedings{dong2019one,
title = {One-Shot Neural Architecture Search via Self-Evaluated Template Network},
author = {Dong, Xuanyi and Yang, Yi},
booktitle = {Proceedings of the IEEE International Conference on Computer Vision (ICCV)},
year = {2019}
}
@inproceedings{dong2019search,
title = {Searching for A Robust Neural Architecture in Four GPU Hours},
author = {Dong, Xuanyi and Yang, Yi},
booktitle = {Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR)},
pages = {1761--1770},
year = {2019}
}
```