##################################################### # Copyright (c) Xuanyi Dong [GitHub D-X-Y], 2021.04 # ##################################################### # python exps/LFNA/lfna.py --env_version v1 --workers 0 # python exps/LFNA/lfna.py --env_version v1 --device cuda ##################################################### import sys, time, copy, torch, random, argparse from tqdm import tqdm from copy import deepcopy from pathlib import Path lib_dir = (Path(__file__).parent / ".." / ".." / "lib").resolve() if str(lib_dir) not in sys.path: sys.path.insert(0, str(lib_dir)) from procedures import prepare_seed, prepare_logger, save_checkpoint, copy_checkpoint from log_utils import time_string from log_utils import AverageMeter, convert_secs2time from utils import split_str2indexes from procedures.advanced_main import basic_train_fn, basic_eval_fn from procedures.metric_utils import SaveMetric, MSEMetric, ComposeMetric from datasets.synthetic_core import get_synthetic_env, EnvSampler from models.xcore import get_model from xlayers import super_core, trunc_normal_ from lfna_utils import lfna_setup, train_model, TimeData from lfna_meta_model import LFNA_Meta def epoch_train(loader, meta_model, base_model, optimizer, criterion, device, logger): base_model.train() meta_model.train() loss_meter = AverageMeter() for ibatch, batch_data in enumerate(loader): timestamps, (batch_seq_inputs, batch_seq_targets) = batch_data timestamps = timestamps.squeeze(dim=-1).to(device) batch_seq_inputs = batch_seq_inputs.to(device) batch_seq_targets = batch_seq_targets.to(device) optimizer.zero_grad() batch_seq_containers = meta_model(timestamps) losses = [] for seq_containers, seq_inputs, seq_targets in zip( batch_seq_containers, batch_seq_inputs, batch_seq_targets ): for container, inputs, targets in zip( seq_containers, seq_inputs, seq_targets ): predictions = base_model.forward_with_container(inputs, container) loss = criterion(predictions, targets) losses.append(loss) final_loss = torch.stack(losses).mean() final_loss.backward() optimizer.step() loss_meter.update(final_loss.item()) return loss_meter def main(args): logger, env_info, model_kwargs = lfna_setup(args) dynamic_env = get_synthetic_env(mode="train", version=args.env_version) base_model = get_model(**model_kwargs) base_model = base_model.to(args.device) criterion = torch.nn.MSELoss() shape_container = base_model.get_w_container().to_shape_container() # pre-train the hypernetwork timestamps = dynamic_env.get_timestamp(None) meta_model = LFNA_Meta(shape_container, args.layer_dim, args.time_dim, timestamps) meta_model = meta_model.to(args.device) logger.log("The base-model has {:} weights.".format(base_model.numel())) logger.log("The meta-model has {:} weights.".format(meta_model.numel())) batch_sampler = EnvSampler(dynamic_env, args.meta_batch, args.sampler_enlarge) dynamic_env.reset_max_seq_length(args.seq_length) """ env_loader = torch.utils.data.DataLoader( dynamic_env, batch_size=args.meta_batch, shuffle=True, num_workers=args.workers, pin_memory=True, ) """ env_loader = torch.utils.data.DataLoader( dynamic_env, batch_sampler=batch_sampler, num_workers=args.workers, pin_memory=True, ) optimizer = torch.optim.Adam( meta_model.parameters(), lr=args.init_lr, weight_decay=args.weight_decay, amsgrad=True, ) lr_scheduler = torch.optim.lr_scheduler.MultiStepLR( optimizer, milestones=[ int(args.epochs * 0.8), int(args.epochs * 0.9), ], gamma=0.1, ) logger.log("The base-model is\n{:}".format(base_model)) logger.log("The meta-model is\n{:}".format(meta_model)) logger.log("The optimizer is\n{:}".format(optimizer)) logger.log("Per epoch iterations = {:}".format(len(env_loader))) # LFNA meta-training per_epoch_time, start_time = AverageMeter(), time.time() last_success_epoch = 0 for iepoch in range(args.epochs): head_str = "[{:}] [{:04d}/{:04d}] ".format( time_string(), iepoch, args.epochs ) + "Time Left: {:}".format( convert_secs2time(per_epoch_time.avg * (args.epochs - iepoch), True) ) loss_meter = epoch_train( env_loader, meta_model, base_model, optimizer, criterion, args.device, logger, ) lr_scheduler.step() logger.log( head_str + " meta-loss: {meter.avg:.4f} ({meter.count:.0f})".format(meter=loss_meter) + " :: lr={:.5f}".format(min(lr_scheduler.get_last_lr())) ) success, best_score = meta_model.save_best(-loss_meter.avg) if success: logger.log("Achieve the best with best-score = {:.5f}".format(best_score)) last_success_epoch = iepoch save_checkpoint( { "meta_model": meta_model.state_dict(), "optimizer": optimizer.state_dict(), "lr_scheduler": lr_scheduler.state_dict(), "iepoch": iepoch, "args": args, }, logger.path("model"), logger, ) if iepoch - last_success_epoch >= args.early_stop_thresh: logger.log("Early stop at {:}".format(iepoch)) break per_epoch_time.update(time.time() - start_time) start_time = time.time() # meta-test meta_model.load_best() eval_env = env_info["dynamic_env"] w_container_per_epoch = dict() for idx in range(args.seq_length, len(eval_env)): # build-timestamp future_time = env_info["{:}-timestamp".format(idx)] time_seqs = [] for iseq in range(args.seq_length): time_seqs.append(future_time - iseq * eval_env.timestamp_interval) time_seqs.reverse() with torch.no_grad(): meta_model.eval() base_model.eval() time_seqs = torch.Tensor(time_seqs).view(1, -1).to(args.device) [seq_containers] = meta_model(time_seqs) future_container = seq_containers[-1] w_container_per_epoch[idx] = future_container.no_grad_clone() # evaluation future_x = env_info["{:}-x".format(idx)].to(args.device) future_y = env_info["{:}-y".format(idx)].to(args.device) future_y_hat = base_model.forward_with_container( future_x, w_container_per_epoch[idx] ) future_loss = criterion(future_y_hat, future_y) logger.log( "meta-test: [{:03d}] -> loss={:.4f}".format(idx, future_loss.item()) ) # creating the new meta-time-embedding distance = meta_model.get_closest_meta_distance(future_time.item()) if distance < eval_env.timestamp_interval: continue # new_param = meta_model.create_meta_embed() optimizer = torch.optim.Adam( [new_param], lr=args.init_lr, weight_decay=1e-5, amsgrad=True ) meta_model.replace_append_learnt(torch.Tensor([future_time]).to(args.device), new_param) meta_model.eval() base_model.train() for iepoch in range(args.epochs): optimizer.zero_grad() [seq_containers] = meta_model(time_seqs) future_container = seq_containers[-1] future_y_hat = base_model.forward_with_container(future_x, future_container) future_loss = criterion(future_y_hat, future_y) future_loss.backward() optimizer.step() logger.log( "post-meta-test: [{:03d}] -> loss={:.4f}".format(idx, future_loss.item()) ) with torch.no_grad(): meta_model.replace_append_learnt(None, None) meta_model.append_fixed(torch.Tensor([future_time]), new_param) save_checkpoint( {"w_container_per_epoch": w_container_per_epoch}, logger.path(None) / "final-ckp.pth", logger, ) logger.log("-" * 200 + "\n") logger.close() if __name__ == "__main__": parser = argparse.ArgumentParser(".") parser.add_argument( "--save_dir", type=str, default="./outputs/lfna-synthetic/lfna-battle", help="The checkpoint directory.", ) parser.add_argument( "--env_version", type=str, required=True, help="The synthetic enviornment version.", ) parser.add_argument( "--hidden_dim", type=int, default=16, help="The hidden dimension.", ) parser.add_argument( "--layer_dim", type=int, default=16, help="The layer chunk dimension.", ) parser.add_argument( "--time_dim", type=int, default=16, help="The timestamp dimension.", ) ##### parser.add_argument( "--init_lr", type=float, default=0.005, help="The initial learning rate for the optimizer (default is Adam)", ) parser.add_argument( "--weight_decay", type=float, default=0.00001, help="The weight decay for the optimizer (default is Adam)", ) parser.add_argument( "--meta_batch", type=int, default=64, help="The batch size for the meta-model", ) parser.add_argument( "--sampler_enlarge", type=int, default=5, help="Enlarge the #iterations for an epoch", ) parser.add_argument("--epochs", type=int, default=10000, help="The total #epochs.") parser.add_argument( "--early_stop_thresh", type=int, default=100, help="The maximum epochs for early stop.", ) parser.add_argument( "--seq_length", type=int, default=5, help="The sequence length." ) parser.add_argument( "--workers", type=int, default=4, help="The number of workers in parallel." ) parser.add_argument( "--device", type=str, default="cpu", help="", ) # Random Seed parser.add_argument("--rand_seed", type=int, default=-1, help="manual seed") args = parser.parse_args() if args.rand_seed is None or args.rand_seed < 0: args.rand_seed = random.randint(1, 100000) assert args.save_dir is not None, "The save dir argument can not be None" args.save_dir = "{:}-d{:}_{:}_{:}-lr{:}-wd{:}-e{:}-env{:}".format( args.save_dir, args.hidden_dim, args.layer_dim, args.time_dim, args.init_lr, args.weight_decay, args.epochs, args.env_version, ) main(args)