##################################################### # Copyright (c) Xuanyi Dong [GitHub D-X-Y], 2021.03 # ##################################################### # pytest ./tests/test_super_container.py -s # ##################################################### import random import unittest import pytest import torch from xautodl import spaces from xautodl.xlayers import super_core """Test the super container layers.""" def _internal_func(inputs, model): outputs = model(inputs) abstract_space = model.abstract_search_space print( "The abstract search space for SuperAttention is:\n{:}".format(abstract_space) ) abstract_space.clean_last() abstract_child = abstract_space.random(reuse_last=True) print("The abstract child program is:\n{:}".format(abstract_child)) model.enable_candidate() model.set_super_run_type(super_core.SuperRunMode.Candidate) model.apply_candidate(abstract_child) outputs = model(inputs) return abstract_child, outputs def _create_stel(input_dim, output_dim, order): return super_core.SuperSequential( super_core.SuperLinear(input_dim, output_dim), super_core.SuperTransformerEncoderLayer( output_dim, num_heads=spaces.Categorical(2, 4, 6), mlp_hidden_multiplier=spaces.Categorical(1, 2, 4), order=order, ), ) @pytest.mark.parametrize("batch", (1, 2, 4)) @pytest.mark.parametrize("seq_dim", (1, 10, 30)) @pytest.mark.parametrize("input_dim", (6, 12, 24, 27)) @pytest.mark.parametrize( "order", (super_core.LayerOrder.PreNorm, super_core.LayerOrder.PostNorm) ) def test_super_sequential(batch, seq_dim, input_dim, order): out1_dim = spaces.Categorical(12, 24, 36) out2_dim = spaces.Categorical(24, 36, 48) out3_dim = spaces.Categorical(36, 72, 100) layer1 = _create_stel(input_dim, out1_dim, order) layer2 = _create_stel(out1_dim, out2_dim, order) layer3 = _create_stel(out2_dim, out3_dim, order) model = super_core.SuperSequential(layer1, layer2, layer3) print(model) model.apply_verbose(True) inputs = torch.rand(batch, seq_dim, input_dim) abstract_child, outputs = _internal_func(inputs, model) output_shape = ( batch, seq_dim, out3_dim.abstract(reuse_last=True).random(reuse_last=True).value, ) assert tuple(outputs.shape) == output_shape def test_super_sequential_v1(): model = super_core.SuperSequential( super_core.SuperSimpleNorm(1, 1), torch.nn.ReLU(), super_core.SuperLeakyReLU(), super_core.SuperLinear(10, 10), super_core.SuperReLU(), ) inputs = torch.rand(10, 10) print(model) outputs = model(inputs) abstract_search_space = model.abstract_search_space print(abstract_search_space)