# CUDA_VISIBLE_DEVICES=0 python exps-tf/GDAS.py import os, sys, time, random, argparse import tensorflow as tf from pathlib import Path lib_dir = (Path(__file__).parent / '..' / 'lib').resolve() if str(lib_dir) not in sys.path: sys.path.insert(0, str(lib_dir)) # self-lib from tf_models import get_cell_based_tiny_net from tf_optimizers import SGDW, AdamW from config_utils import dict2config from log_utils import time_string from models import CellStructure def pre_process(image_a, label_a, image_b, label_b): def standard_func(image): x = tf.pad(image, [[4, 4], [4, 4], [0, 0]]) x = tf.image.random_crop(x, [32, 32, 3]) x = tf.image.random_flip_left_right(x) return x return standard_func(image_a), label_a, standard_func(image_b), label_b def main(xargs): cifar10 = tf.keras.datasets.cifar10 (x_train, y_train), (x_test, y_test) = cifar10.load_data() x_train, x_test = x_train / 255.0, x_test / 255.0 x_train, x_test = x_train.astype('float32'), x_test.astype('float32') # Add a channels dimension all_indexes = list(range(x_train.shape[0])) random.shuffle(all_indexes) s_train_idxs, s_valid_idxs = all_indexes[::2], all_indexes[1::2] search_train_x, search_train_y = x_train[s_train_idxs], y_train[s_train_idxs] search_valid_x, search_valid_y = x_train[s_valid_idxs], y_train[s_valid_idxs] #x_train, x_test = x_train[..., tf.newaxis], x_test[..., tf.newaxis] # Use tf.data #train_ds = tf.data.Dataset.from_tensor_slices((x_train, y_train)).shuffle(10000).batch(64) search_ds = tf.data.Dataset.from_tensor_slices((search_train_x, search_train_y, search_valid_x, search_valid_y)) search_ds = search_ds.map(pre_process).shuffle(1000).batch(64) test_ds = tf.data.Dataset.from_tensor_slices((x_test, y_test)).batch(32) # Create an instance of the model config = dict2config({'name': 'GDAS', 'C' : xargs.channel, 'N': xargs.num_cells, 'max_nodes': xargs.max_nodes, 'num_classes': 10, 'space': 'nas-bench-201', 'affine': True}, None) model = get_cell_based_tiny_net(config) #import pdb; pdb.set_trace() #model.build(((64, 32, 32, 3), (1,))) #for x in model.trainable_variables: # print('{:30s} : {:}'.format(x.name, x.shape)) # Choose optimizer loss_object = tf.keras.losses.SparseCategoricalCrossentropy() w_optimizer = SGDW(learning_rate=xargs.w_lr, weight_decay=xargs.w_weight_decay, momentum=xargs.w_momentum, nesterov=True) a_optimizer = AdamW(learning_rate=xargs.arch_learning_rate, weight_decay=xargs.arch_weight_decay, beta_1=0.5, beta_2=0.999, epsilon=1e-07) #w_optimizer = tf.keras.optimizers.SGD(learning_rate=0.025, momentum=0.9, nesterov=True) #a_optimizer = tf.keras.optimizers.AdamW(learning_rate=xargs.arch_learning_rate, beta_1=0.5, beta_2=0.999, epsilon=1e-07) #### # metrics train_loss = tf.keras.metrics.Mean(name='train_loss') train_accuracy = tf.keras.metrics.SparseCategoricalAccuracy(name='train_accuracy') valid_loss = tf.keras.metrics.Mean(name='valid_loss') valid_accuracy = tf.keras.metrics.SparseCategoricalAccuracy(name='valid_accuracy') test_loss = tf.keras.metrics.Mean(name='test_loss') test_accuracy = tf.keras.metrics.SparseCategoricalAccuracy(name='test_accuracy') @tf.function def search_step(train_images, train_labels, valid_images, valid_labels, tf_tau): # optimize weights with tf.GradientTape() as tape: predictions = model(train_images, tf_tau, True) w_loss = loss_object(train_labels, predictions) net_w_param = model.get_weights() gradients = tape.gradient(w_loss, net_w_param) w_optimizer.apply_gradients(zip(gradients, net_w_param)) train_loss(w_loss) train_accuracy(train_labels, predictions) # optimize alphas with tf.GradientTape() as tape: predictions = model(valid_images, tf_tau, True) a_loss = loss_object(valid_labels, predictions) net_a_param = model.get_alphas() gradients = tape.gradient(a_loss, net_a_param) a_optimizer.apply_gradients(zip(gradients, net_a_param)) valid_loss(a_loss) valid_accuracy(valid_labels, predictions) # TEST @tf.function def test_step(images, labels): predictions = model(images) t_loss = loss_object(labels, predictions) test_loss(t_loss) test_accuracy(labels, predictions) print('{:} start searching with {:} epochs ({:} batches per epoch).'.format(time_string(), xargs.epochs, tf.data.experimental.cardinality(search_ds).numpy())) for epoch in range(xargs.epochs): # Reset the metrics at the start of the next epoch train_loss.reset_states() ; train_accuracy.reset_states() test_loss.reset_states() ; test_accuracy.reset_states() cur_tau = xargs.tau_max - (xargs.tau_max-xargs.tau_min) * epoch / (xargs.epochs-1) tf_tau = tf.cast(cur_tau, dtype=tf.float32, name='tau') for trn_imgs, trn_labels, val_imgs, val_labels in search_ds: search_step(trn_imgs, trn_labels, val_imgs, val_labels, tf_tau) genotype = model.genotype() genotype = CellStructure(genotype) #for test_images, test_labels in test_ds: # test_step(test_images, test_labels) template = '{:} Epoch {:03d}/{:03d}, Train-Loss: {:.3f}, Train-Accuracy: {:.2f}%, Valid-Loss: {:.3f}, Valid-Accuracy: {:.2f}% | tau={:.3f}' print(template.format(time_string(), epoch+1, xargs.epochs, train_loss.result(), train_accuracy.result()*100, valid_loss.result(), valid_accuracy.result()*100, cur_tau)) print('{:} genotype : {:}\n{:}\n'.format(time_string(), genotype, model.get_np_alphas())) if __name__ == '__main__': parser = argparse.ArgumentParser(description='NAS-Bench-201', formatter_class=argparse.ArgumentDefaultsHelpFormatter) # training details parser.add_argument('--epochs' , type=int , default= 250 , help='') parser.add_argument('--tau_max' , type=float, default= 10 , help='') parser.add_argument('--tau_min' , type=float, default= 0.1 , help='') parser.add_argument('--w_lr' , type=float, default= 0.025, help='') parser.add_argument('--w_weight_decay' , type=float, default=0.0005, help='') parser.add_argument('--w_momentum' , type=float, default= 0.9 , help='') parser.add_argument('--arch_learning_rate', type=float, default=0.0003, help='') parser.add_argument('--arch_weight_decay' , type=float, default=0.001, help='') # marco structure parser.add_argument('--channel' , type=int , default=16, help='') parser.add_argument('--num_cells' , type=int , default= 5, help='') parser.add_argument('--max_nodes' , type=int , default= 4, help='') args = parser.parse_args() main( args )