##################################################### # Copyright (c) Xuanyi Dong [GitHub D-X-Y], 2021.04 # ##################################################### # python exps/LFNA/lfna.py --env_version v1 --workers 0 # python exps/LFNA/lfna.py --env_version v1 --device cuda --lr 0.001 # python exps/LFNA/lfna.py --env_version v1 --device cuda --lr 0.002 ##################################################### import sys, time, copy, torch, random, argparse from tqdm import tqdm from copy import deepcopy from pathlib import Path lib_dir = (Path(__file__).parent / ".." / "..").resolve() print("LIB-DIR: {:}".format(lib_dir)) if str(lib_dir) not in sys.path: sys.path.insert(0, str(lib_dir)) from xautodl.procedures import ( prepare_seed, prepare_logger, save_checkpoint, copy_checkpoint, ) from xautodl.log_utils import time_string from xautodl.log_utils import AverageMeter, convert_secs2time from xautodl.utils import split_str2indexes from xautodl.procedures.advanced_main import basic_train_fn, basic_eval_fn from xautodl.procedures.metric_utils import SaveMetric, MSEMetric, ComposeMetric from xautodl.datasets.synthetic_core import get_synthetic_env, EnvSampler from xautodl.models.xcore import get_model from xautodl.xlayers import super_core, trunc_normal_ from lfna_utils import lfna_setup, train_model, TimeData from lfna_meta_model import LFNA_Meta def epoch_train(loader, meta_model, base_model, optimizer, criterion, device, logger): base_model.train() meta_model.train() loss_meter = AverageMeter() for ibatch, batch_data in enumerate(loader): timestamps, (batch_seq_inputs, batch_seq_targets) = batch_data timestamps = timestamps.squeeze(dim=-1).to(device) batch_seq_inputs = batch_seq_inputs.to(device) batch_seq_targets = batch_seq_targets.to(device) optimizer.zero_grad() batch_seq_containers = meta_model(timestamps) losses = [] for seq_containers, seq_inputs, seq_targets in zip( batch_seq_containers, batch_seq_inputs, batch_seq_targets ): for container, inputs, targets in zip( seq_containers, seq_inputs, seq_targets ): predictions = base_model.forward_with_container(inputs, container) loss = criterion(predictions, targets) losses.append(loss) final_loss = torch.stack(losses).mean() final_loss.backward() optimizer.step() loss_meter.update(final_loss.item()) return loss_meter def epoch_evaluate(loader, meta_model, base_model, criterion, device, logger): with torch.no_grad(): base_model.eval() meta_model.eval() loss_meter = AverageMeter() for ibatch, batch_data in enumerate(loader): timestamps, (batch_seq_inputs, batch_seq_targets) = batch_data timestamps = timestamps.squeeze(dim=-1).to(device) batch_seq_inputs = batch_seq_inputs.to(device) batch_seq_targets = batch_seq_targets.to(device) batch_seq_containers = meta_model(timestamps) losses = [] for seq_containers, seq_inputs, seq_targets in zip( batch_seq_containers, batch_seq_inputs, batch_seq_targets ): for container, inputs, targets in zip( seq_containers, seq_inputs, seq_targets ): predictions = base_model.forward_with_container(inputs, container) loss = criterion(predictions, targets) losses.append(loss) final_loss = torch.stack(losses).mean() loss_meter.update(final_loss.item()) return loss_meter def pretrain(base_model, meta_model, criterion, xenv, args, logger): optimizer = torch.optim.Adam( meta_model.parameters(), lr=args.lr, weight_decay=args.weight_decay, amsgrad=True, ) logger.log("Pre-train the meta-model") logger.log("Using the optimizer: {:}".format(optimizer)) meta_model.set_best_dir(logger.path(None) / "checkpoint-pretrain") per_epoch_time, start_time = AverageMeter(), time.time() for iepoch in range(args.epochs): left_time = "Time Left: {:}".format( convert_secs2time(per_epoch_time.avg * (args.epochs - iepoch), True) ) total_meta_losses, total_match_losses = [], [] for ibatch in range(args.meta_batch): rand_index = random.randint(0, meta_model.meta_length - xenv.seq_length - 1) timestamps = meta_model.meta_timestamps[ rand_index : rand_index + xenv.seq_length ] seq_timestamps, (seq_inputs, seq_targets) = xenv.seq_call(timestamps) [seq_containers], time_embeds = meta_model( torch.unsqueeze(timestamps, dim=0) ) # performance loss losses = [] seq_inputs, seq_targets = seq_inputs.to(args.device), seq_targets.to( args.device ) for container, inputs, targets in zip( seq_containers, seq_inputs, seq_targets ): predictions = base_model.forward_with_container(inputs, container) loss = criterion(predictions, targets) losses.append(loss) meta_loss = torch.stack(losses).mean() match_loss = criterion( torch.squeeze(time_embeds, dim=0), meta_model.super_meta_embed[rand_index : rand_index + xenv.seq_length], ) # batch_loss = meta_loss + match_loss * 0.1 # total_losses.append(batch_loss) total_meta_losses.append(meta_loss) total_match_losses.append(match_loss) final_meta_loss = torch.stack(total_meta_losses).mean() final_match_loss = torch.stack(total_match_losses).mean() total_loss = final_meta_loss + final_match_loss total_loss.backward() optimizer.step() # success success, best_score = meta_model.save_best(-total_loss.item()) logger.log( "{:} [{:04d}/{:}] loss : {:.5f} = {:.5f} + {:.5f} (match)".format( time_string(), iepoch, args.epochs, total_loss.item(), final_meta_loss.item(), final_match_loss.item(), ) + ", batch={:}".format(len(total_meta_losses)) + ", success={:}, best_score={:.4f}".format(success, -best_score) + " {:}".format(left_time) ) per_epoch_time.update(time.time() - start_time) start_time = time.time() def main(args): logger, env_info, model_kwargs = lfna_setup(args) train_env = get_synthetic_env(mode="train", version=args.env_version) valid_env = get_synthetic_env(mode="valid", version=args.env_version) logger.log("training enviornment: {:}".format(train_env)) logger.log("validation enviornment: {:}".format(valid_env)) base_model = get_model(**model_kwargs) base_model = base_model.to(args.device) criterion = torch.nn.MSELoss() shape_container = base_model.get_w_container().to_shape_container() # pre-train the hypernetwork timestamps = train_env.get_timestamp(None) meta_model = LFNA_Meta(shape_container, args.layer_dim, args.time_dim, timestamps) meta_model = meta_model.to(args.device) logger.log("The base-model has {:} weights.".format(base_model.numel())) logger.log("The meta-model has {:} weights.".format(meta_model.numel())) batch_sampler = EnvSampler(train_env, args.meta_batch, args.sampler_enlarge) train_env.reset_max_seq_length(args.seq_length) valid_env.reset_max_seq_length(args.seq_length) valid_env_loader = torch.utils.data.DataLoader( valid_env, batch_size=args.meta_batch, shuffle=True, num_workers=args.workers, pin_memory=True, ) train_env_loader = torch.utils.data.DataLoader( train_env, batch_sampler=batch_sampler, num_workers=args.workers, pin_memory=True, ) optimizer = torch.optim.Adam( meta_model.parameters(), lr=args.lr, weight_decay=args.weight_decay, amsgrad=True, ) lr_scheduler = torch.optim.lr_scheduler.MultiStepLR( optimizer, milestones=[1, 2, 3, 4, 5], gamma=0.2, ) logger.log("The base-model is\n{:}".format(base_model)) logger.log("The meta-model is\n{:}".format(meta_model)) logger.log("The optimizer is\n{:}".format(optimizer)) logger.log("The scheduler is\n{:}".format(lr_scheduler)) logger.log("Per epoch iterations = {:}".format(len(train_env_loader))) pretrain(base_model, meta_model, criterion, train_env, args, logger) if logger.path("model").exists(): ckp_data = torch.load(logger.path("model")) base_model.load_state_dict(ckp_data["base_model"]) meta_model.load_state_dict(ckp_data["meta_model"]) optimizer.load_state_dict(ckp_data["optimizer"]) lr_scheduler.load_state_dict(ckp_data["lr_scheduler"]) last_success_epoch = ckp_data["last_success_epoch"] start_epoch = ckp_data["iepoch"] + 1 check_strs = [ "epochs", "env_version", "hidden_dim", "lr", "layer_dim", "time_dim", "seq_length", ] for xstr in check_strs: cx = getattr(args, xstr) px = getattr(ckp_data["args"], xstr) assert cx == px, "[{:}] {:} vs {:}".format(xstr, cx, ps) success, _ = meta_model.save_best(ckp_data["cur_score"]) logger.log("Load ckp from {:}".format(logger.path("model"))) if success: logger.log( "Re-save the best model with score={:}".format(ckp_data["cur_score"]) ) else: start_epoch, last_success_epoch = 0, 0 # LFNA meta-train meta_model.set_best_dir(logger.path(None) / "checkpoint") per_epoch_time, start_time = AverageMeter(), time.time() for iepoch in range(start_epoch, args.epochs): head_str = "[{:}] [{:04d}/{:04d}] ".format( time_string(), iepoch, args.epochs ) + "Time Left: {:}".format( convert_secs2time(per_epoch_time.avg * (args.epochs - iepoch), True) ) loss_meter = epoch_train( train_env_loader, meta_model, base_model, optimizer, criterion, args.device, logger, ) valid_loss_meter = epoch_evaluate( valid_env_loader, meta_model, base_model, criterion, args.device, logger ) logger.log( head_str + " meta-train-loss: {meter.avg:.4f} ({meter.count:.0f})".format( meter=loss_meter ) + " meta-valid-loss: {meter.val:.4f}".format(meter=valid_loss_meter) + " :: lr={:.5f}".format(min(lr_scheduler.get_last_lr())) + " :: last-success={:}".format(last_success_epoch) ) success, best_score = meta_model.save_best(-loss_meter.avg) if success: logger.log("Achieve the best with best-score = {:.5f}".format(best_score)) last_success_epoch = iepoch save_checkpoint( { "meta_model": meta_model.state_dict(), "base_model": base_model.state_dict(), "optimizer": optimizer.state_dict(), "lr_scheduler": lr_scheduler.state_dict(), "last_success_epoch": last_success_epoch, "cur_score": -loss_meter.avg, "iepoch": iepoch, "args": args, }, logger.path("model"), logger, ) if iepoch - last_success_epoch >= args.early_stop_thresh: if lr_scheduler.last_epoch > 4: logger.log("Early stop at {:}".format(iepoch)) break else: last_success_epoch = iepoch lr_scheduler.step() logger.log("Decay the lr [{:}]".format(lr_scheduler.last_epoch)) per_epoch_time.update(time.time() - start_time) start_time = time.time() # meta-test meta_model.load_best() eval_env = env_info["dynamic_env"] w_container_per_epoch = dict() for idx in range(args.seq_length, len(eval_env)): # build-timestamp future_time = env_info["{:}-timestamp".format(idx)].item() time_seqs = [] for iseq in range(args.seq_length): time_seqs.append(future_time - iseq * eval_env.timestamp_interval) time_seqs.reverse() with torch.no_grad(): meta_model.eval() base_model.eval() time_seqs = torch.Tensor(time_seqs).view(1, -1).to(args.device) [seq_containers] = meta_model(time_seqs) future_container = seq_containers[-1] w_container_per_epoch[idx] = future_container.no_grad_clone() # evaluation future_x = env_info["{:}-x".format(idx)].to(args.device) future_y = env_info["{:}-y".format(idx)].to(args.device) future_y_hat = base_model.forward_with_container( future_x, w_container_per_epoch[idx] ) future_loss = criterion(future_y_hat, future_y) logger.log( "meta-test: [{:03d}] -> loss={:.4f}".format(idx, future_loss.item()) ) # creating the new meta-time-embedding distance = meta_model.get_closest_meta_distance(future_time) if distance < eval_env.timestamp_interval: continue # new_param = meta_model.create_meta_embed() optimizer = torch.optim.Adam( [new_param], lr=args.refine_lr, weight_decay=1e-5, amsgrad=True ) meta_model.replace_append_learnt( torch.Tensor([future_time]).to(args.device), new_param ) meta_model.eval() base_model.train() for iepoch in range(args.refine_epochs): optimizer.zero_grad() [seq_containers] = meta_model(time_seqs) future_container = seq_containers[-1] future_y_hat = base_model.forward_with_container(future_x, future_container) future_loss = criterion(future_y_hat, future_y) future_loss.backward() optimizer.step() logger.log( "post-meta-test: [{:03d}] -> loss={:.4f}".format(idx, future_loss.item()) ) with torch.no_grad(): meta_model.replace_append_learnt(None, None) meta_model.append_fixed(torch.Tensor([future_time]), new_param) save_checkpoint( {"w_container_per_epoch": w_container_per_epoch}, logger.path(None) / "final-ckp.pth", logger, ) logger.log("-" * 200 + "\n") logger.close() if __name__ == "__main__": parser = argparse.ArgumentParser(".") parser.add_argument( "--save_dir", type=str, default="./outputs/lfna-synthetic/lfna-battle", help="The checkpoint directory.", ) parser.add_argument( "--env_version", type=str, required=True, help="The synthetic enviornment version.", ) parser.add_argument( "--hidden_dim", type=int, default=16, help="The hidden dimension.", ) parser.add_argument( "--layer_dim", type=int, default=16, help="The layer chunk dimension.", ) parser.add_argument( "--time_dim", type=int, default=16, help="The timestamp dimension.", ) ##### parser.add_argument( "--lr", type=float, default=0.002, help="The initial learning rate for the optimizer (default is Adam)", ) parser.add_argument( "--weight_decay", type=float, default=0.00001, help="The weight decay for the optimizer (default is Adam)", ) parser.add_argument( "--meta_batch", type=int, default=64, help="The batch size for the meta-model", ) parser.add_argument( "--sampler_enlarge", type=int, default=5, help="Enlarge the #iterations for an epoch", ) parser.add_argument("--epochs", type=int, default=10000, help="The total #epochs.") parser.add_argument( "--refine_lr", type=float, default=0.005, help="The learning rate for the optimizer, during refine", ) parser.add_argument( "--refine_epochs", type=int, default=1000, help="The final refine #epochs." ) parser.add_argument( "--early_stop_thresh", type=int, default=20, help="The #epochs for early stop.", ) parser.add_argument( "--seq_length", type=int, default=10, help="The sequence length." ) parser.add_argument( "--workers", type=int, default=4, help="The number of workers in parallel." ) parser.add_argument( "--device", type=str, default="cpu", help="", ) # Random Seed parser.add_argument("--rand_seed", type=int, default=-1, help="manual seed") args = parser.parse_args() if args.rand_seed is None or args.rand_seed < 0: args.rand_seed = random.randint(1, 100000) assert args.save_dir is not None, "The save dir argument can not be None" args.save_dir = "{:}-d{:}_{:}_{:}-s{:}-lr{:}-wd{:}-e{:}-env{:}".format( args.save_dir, args.hidden_dim, args.layer_dim, args.time_dim, args.seq_length, args.lr, args.weight_decay, args.epochs, args.env_version, ) main(args)