############################################################### # NATS-Bench (arxiv.org/pdf/2009.00437.pdf), IEEE TPAMI 2021 # # The code to draw some results in Table 4 in our paper. # ############################################################### # Copyright (c) Xuanyi Dong [GitHub D-X-Y], 2020.06 # ############################################################### # Usage: python exps/NATS-Bench/draw-table.py # ############################################################### import os, gc, sys, time, torch, argparse import numpy as np from typing import List, Text, Dict, Any from shutil import copyfile from collections import defaultdict, OrderedDict from copy import deepcopy from pathlib import Path import matplotlib import seaborn as sns matplotlib.use("agg") import matplotlib.pyplot as plt import matplotlib.ticker as ticker from xautodl.config_utils import dict2config, load_config from xautodl.log_utils import time_string from nats_bench import create def fetch_data(root_dir="./output/search", search_space="tss", dataset=None): ss_dir = "{:}-{:}".format(root_dir, search_space) alg2name, alg2path = OrderedDict(), OrderedDict() alg2name["REA"] = "R-EA-SS3" alg2name["REINFORCE"] = "REINFORCE-0.01" alg2name["RANDOM"] = "RANDOM" alg2name["BOHB"] = "BOHB" for alg, name in alg2name.items(): alg2path[alg] = os.path.join(ss_dir, dataset, name, "results.pth") assert os.path.isfile(alg2path[alg]), "invalid path : {:}".format(alg2path[alg]) alg2data = OrderedDict() for alg, path in alg2path.items(): data = torch.load(path) for index, info in data.items(): info["time_w_arch"] = [ (x, y) for x, y in zip(info["all_total_times"], info["all_archs"]) ] for j, arch in enumerate(info["all_archs"]): assert arch != -1, "invalid arch from {:} {:} {:} ({:}, {:})".format( alg, search_space, dataset, index, j ) alg2data[alg] = data return alg2data def get_valid_test_acc(api, arch, dataset): is_size_space = api.search_space_name == "size" if dataset == "cifar10": xinfo = api.get_more_info( arch, dataset=dataset, hp=90 if is_size_space else 200, is_random=False ) test_acc = xinfo["test-accuracy"] xinfo = api.get_more_info( arch, dataset="cifar10-valid", hp=90 if is_size_space else 200, is_random=False, ) valid_acc = xinfo["valid-accuracy"] else: xinfo = api.get_more_info( arch, dataset=dataset, hp=90 if is_size_space else 200, is_random=False ) valid_acc = xinfo["valid-accuracy"] test_acc = xinfo["test-accuracy"] return ( valid_acc, test_acc, "validation = {:.2f}, test = {:.2f}\n".format(valid_acc, test_acc), ) def show_valid_test(api, arch): is_size_space = api.search_space_name == "size" final_str = "" for dataset in ["cifar10", "cifar100", "ImageNet16-120"]: valid_acc, test_acc, perf_str = get_valid_test_acc(api, arch, dataset) final_str += "{:} : {:}\n".format(dataset, perf_str) return final_str def find_best_valid(api, dataset): all_valid_accs, all_test_accs = [], [] for index, arch in enumerate(api): valid_acc, test_acc, perf_str = get_valid_test_acc(api, index, dataset) all_valid_accs.append((index, valid_acc)) all_test_accs.append((index, test_acc)) best_valid_index = sorted(all_valid_accs, key=lambda x: -x[1])[0][0] best_test_index = sorted(all_test_accs, key=lambda x: -x[1])[0][0] print("-" * 50 + "{:10s}".format(dataset) + "-" * 50) print( "Best ({:}) architecture on validation: {:}".format( best_valid_index, api[best_valid_index] ) ) print( "Best ({:}) architecture on test: {:}".format( best_test_index, api[best_test_index] ) ) _, _, perf_str = get_valid_test_acc(api, best_valid_index, dataset) print("using validation ::: {:}".format(perf_str)) _, _, perf_str = get_valid_test_acc(api, best_test_index, dataset) print("using test ::: {:}".format(perf_str)) def interplate_fn(xpair1, xpair2, x): (x1, y1) = xpair1 (x2, y2) = xpair2 return (x2 - x) / (x2 - x1) * y1 + (x - x1) / (x2 - x1) * y2 def query_performance(api, info, dataset, ticket): info = deepcopy(info) results, is_size_space = [], api.search_space_name == "size" time_w_arch = sorted(info["time_w_arch"], key=lambda x: abs(x[0] - ticket)) time_a, arch_a = time_w_arch[0] time_b, arch_b = time_w_arch[1] v_acc_a, t_acc_a, _ = get_valid_test_acc(api, arch_a, dataset) v_acc_b, t_acc_b, _ = get_valid_test_acc(api, arch_b, dataset) v_acc = interplate_fn((time_a, v_acc_a), (time_b, v_acc_b), ticket) t_acc = interplate_fn((time_a, t_acc_a), (time_b, t_acc_b), ticket) # if True: # interplate = (time_b-ticket) / (time_b-time_a) * accuracy_a + (ticket-time_a) / (time_b-time_a) * accuracy_b # results.append(interplate) # return sum(results) / len(results) return v_acc, t_acc def show_multi_trial(search_space): api = create(None, search_space, fast_mode=True, verbose=False) def show(dataset): print("show {:} on {:} done.".format(dataset, search_space)) xdataset, max_time = dataset.split("-T") alg2data = fetch_data(search_space=search_space, dataset=dataset) for idx, (alg, data) in enumerate(alg2data.items()): valid_accs, test_accs = [], [] for _, x in data.items(): v_acc, t_acc = query_performance(api, x, xdataset, float(max_time)) valid_accs.append(v_acc) test_accs.append(t_acc) valid_str = "{:.2f}$\pm${:.2f}".format( np.mean(valid_accs), np.std(valid_accs) ) test_str = "{:.2f}$\pm${:.2f}".format(np.mean(test_accs), np.std(test_accs)) print( "{:} plot alg : {:10s} | validation = {:} | test = {:}".format( time_string(), alg, valid_str, test_str ) ) if search_space == "tss": datasets = ["cifar10-T20000", "cifar100-T40000", "ImageNet16-120-T120000"] elif search_space == "sss": datasets = ["cifar10-T20000", "cifar100-T40000", "ImageNet16-120-T60000"] else: raise ValueError("Unknown search space: {:}".format(search_space)) for dataset in datasets: show(dataset) print("{:} complete show multi-trial results.\n".format(time_string())) if __name__ == "__main__": show_multi_trial("tss") show_multi_trial("sss") api_tss = create(None, "tss", fast_mode=False, verbose=False) resnet = "|nor_conv_3x3~0|+|none~0|nor_conv_3x3~1|+|skip_connect~0|none~1|skip_connect~2|" resnet_index = api_tss.query_index_by_arch(resnet) print(show_valid_test(api_tss, resnet_index)) for dataset in ["cifar10", "cifar100", "ImageNet16-120"]: find_best_valid(api_tss, dataset) largest = "64:64:64:64:64" largest_index = api_sss.query_index_by_arch(largest) print(show_valid_test(api_sss, largest_index)) for dataset in ["cifar10", "cifar100", "ImageNet16-120"]: find_best_valid(api_sss, dataset)