#####################################################
# Copyright (c) Xuanyi Dong [GitHub D-X-Y], 2019.08 #
############################################################################################
# NAS-Bench-201: Extending the Scope of Reproducible Neural Architecture Search, ICLR 2020 #
############################################################################################
# The history of benchmark files:
# [2020.02.25] NAS-Bench-201-v1_0-e61699.pth : 6219 architectures are trained once, 1621 architectures are trained twice, 7785 architectures are trained three times. `LESS` only supports CIFAR10-VALID.
# [2020.03.16] NAS-Bench-201-v1_1-096897.pth : 2225 architectures are trained once, 5439 archiitectures are trained twice, 7961 architectures are trained three times on all training sets. For the hyper-parameters with the total epochs of 12, each model is trained on CIFAR-10, CIFAR-100, ImageNet16-120 once, and is trained on CIFAR-10-VALID twice.
#
# I'm still actively enhancing this benchmark. Please feel free to contact me if you have any question w.r.t. NAS-Bench-201.
#
import os, copy, random, torch, numpy as np
from pathlib import Path
from typing import List, Text, Union, Dict, Optional
from collections import OrderedDict, defaultdict

from .api_utils import ArchResults
from .api_utils import NASBenchMetaAPI
from .api_utils import remap_dataset_set_names


ALL_BENCHMARK_FILES = ['NAS-Bench-201-v1_0-e61699.pth', 'NAS-Bench-201-v1_1-096897.pth']
ALL_ARCHIVE_DIRS = ['NAS-Bench-201-v1_1-archive']


def print_information(information, extra_info=None, show=False):
  dataset_names = information.get_dataset_names()
  strings = [information.arch_str, 'datasets : {:}, extra-info : {:}'.format(dataset_names, extra_info)]
  def metric2str(loss, acc):
    return 'loss = {:.3f}, top1 = {:.2f}%'.format(loss, acc)

  for ida, dataset in enumerate(dataset_names):
    metric = information.get_compute_costs(dataset)
    flop, param, latency = metric['flops'], metric['params'], metric['latency']
    str1 = '{:14s} FLOP={:6.2f} M, Params={:.3f} MB, latency={:} ms.'.format(dataset, flop, param, '{:.2f}'.format(latency*1000) if latency is not None and latency > 0 else None)
    train_info = information.get_metrics(dataset, 'train')
    if dataset == 'cifar10-valid':
      valid_info = information.get_metrics(dataset, 'x-valid')
      str2 = '{:14s} train : [{:}], valid : [{:}]'.format(dataset, metric2str(train_info['loss'], train_info['accuracy']), metric2str(valid_info['loss'], valid_info['accuracy']))
    elif dataset == 'cifar10':
      test__info = information.get_metrics(dataset, 'ori-test')
      str2 = '{:14s} train : [{:}], test  : [{:}]'.format(dataset, metric2str(train_info['loss'], train_info['accuracy']), metric2str(test__info['loss'], test__info['accuracy']))
    else:
      valid_info = information.get_metrics(dataset, 'x-valid')
      test__info = information.get_metrics(dataset, 'x-test')
      str2 = '{:14s} train : [{:}], valid : [{:}], test : [{:}]'.format(dataset, metric2str(train_info['loss'], train_info['accuracy']), metric2str(valid_info['loss'], valid_info['accuracy']), metric2str(test__info['loss'], test__info['accuracy']))
    strings += [str1, str2]
  if show: print('\n'.join(strings))
  return strings


"""
This is the class for the API of NAS-Bench-201.
"""
class NASBench201API(NASBenchMetaAPI):

  """ The initialization function that takes the dataset file path (or a dict loaded from that path) as input. """
  def __init__(self, file_path_or_dict: Optional[Union[Text, Dict]]=None,
               verbose: bool=True):
    self.filename = None
    self.reset_time()
    if file_path_or_dict is None:
      file_path_or_dict = os.path.join(os.environ['TORCH_HOME'], ALL_BENCHMARK_FILES[-1])
      print ('Try to use the default NAS-Bench-201 path from {:}.'.format(file_path_or_dict))
    if isinstance(file_path_or_dict, str) or isinstance(file_path_or_dict, Path):
      file_path_or_dict = str(file_path_or_dict)
      if verbose: print('try to create the NAS-Bench-201 api from {:}'.format(file_path_or_dict))
      assert os.path.isfile(file_path_or_dict), 'invalid path : {:}'.format(file_path_or_dict)
      self.filename = Path(file_path_or_dict).name
      file_path_or_dict = torch.load(file_path_or_dict, map_location='cpu')
    elif isinstance(file_path_or_dict, dict):
      file_path_or_dict = copy.deepcopy(file_path_or_dict)
    else: raise ValueError('invalid type : {:} not in [str, dict]'.format(type(file_path_or_dict)))
    assert isinstance(file_path_or_dict, dict), 'It should be a dict instead of {:}'.format(type(file_path_or_dict))
    self.verbose = verbose # [TODO] a flag indicating whether to print more logs
    keys = ('meta_archs', 'arch2infos', 'evaluated_indexes')
    for key in keys: assert key in file_path_or_dict, 'Can not find key[{:}] in the dict'.format(key)
    self.meta_archs = copy.deepcopy( file_path_or_dict['meta_archs'] )
    # This is a dict mapping each architecture to a dict, where the key is #epochs and the value is ArchResults
    self.arch2infos_dict = OrderedDict()
    self._avaliable_hps = set(['12', '200'])
    for xkey in sorted(list(file_path_or_dict['arch2infos'].keys())):
      all_info = file_path_or_dict['arch2infos'][xkey]
      hp2archres = OrderedDict()
      # self.arch2infos_less[xkey] = ArchResults.create_from_state_dict( all_info['less'] )
      # self.arch2infos_full[xkey] = ArchResults.create_from_state_dict( all_info['full'] )
      hp2archres['12'] = ArchResults.create_from_state_dict(all_info['less'])
      hp2archres['200'] = ArchResults.create_from_state_dict(all_info['full'])
      self.arch2infos_dict[xkey] = hp2archres
    self.evaluated_indexes = sorted(list(file_path_or_dict['evaluated_indexes']))
    self.archstr2index = {}
    for idx, arch in enumerate(self.meta_archs):
      assert arch not in self.archstr2index, 'This [{:}]-th arch {:} already in the dict ({:}).'.format(idx, arch, self.archstr2index[arch])
      self.archstr2index[ arch ] = idx

  def reload(self, archive_root: Text = None, index: int = None):
    """Overwrite all information of the 'index'-th architecture in the search space.
         It will load its data from 'archive_root'.
    """
    if archive_root is None:
      archive_root = os.path.join(os.environ['TORCH_HOME'], ALL_ARCHIVE_DIRS[-1])
    assert os.path.isdir(archive_root), 'invalid directory : {:}'.format(archive_root)
    if index is None:
      indexes = list(range(len(self)))
    else:
      indexes = [index]
    for idx in indexes:
      assert 0 <= idx < len(self.meta_archs), 'invalid index of {:}'.format(idx)
      xfile_path = os.path.join(archive_root, '{:06d}-FULL.pth'.format(idx))
      assert os.path.isfile(xfile_path), 'invalid data path : {:}'.format(xfile_path)
      xdata = torch.load(xfile_path, map_location='cpu')
      assert isinstance(xdata, dict) and 'full' in xdata and 'less' in xdata, 'invalid format of data in {:}'.format(xfile_path)
      hp2archres = OrderedDict()
      hp2archres['12'] = ArchResults.create_from_state_dict(xdata['less'])
      hp2archres['200'] = ArchResults.create_from_state_dict(xdata['full'])
      self.arch2infos_dict[idx] = hp2archres

  def query_info_str_by_arch(self, arch, hp: Text='12'):
    """ This function is used to query the information of a specific architecture
        'arch' can be an architecture index or an architecture string
        When hp=12, the hyper-parameters used to train a model are in 'configs/nas-benchmark/hyper-opts/12E.config'
        When hp=200, the hyper-parameters used to train a model are in 'configs/nas-benchmark/hyper-opts/200E.config'
        The difference between these three configurations are the number of training epochs.
    """
    if self.verbose:
      print('Call query_info_str_by_arch with arch={:} and hp={:}'.format(arch, hp))
    return self._query_info_str_by_arch(arch, hp, print_information)

  # obtain the metric for the `index`-th architecture
  # `dataset` indicates the dataset:
  #   'cifar10-valid'  : using the proposed train set of CIFAR-10 as the training set
  #   'cifar10'        : using the proposed train+valid set of CIFAR-10 as the training set
  #   'cifar100'       : using the proposed train set of CIFAR-100 as the training set
  #   'ImageNet16-120' : using the proposed train set of ImageNet-16-120 as the training set
  # `iepoch` indicates the index of training epochs from 0 to 11/199.
  #   When iepoch=None, it will return the metric for the last training epoch
  #   When iepoch=11, it will return the metric for the 11-th training epoch (starting from 0)
  # `use_12epochs_result` indicates different hyper-parameters for training
  #   When use_12epochs_result=True, it trains the network with 12 epochs and the LR decayed from 0.1 to 0 within 12 epochs
  #   When use_12epochs_result=False, it trains the network with 200 epochs and the LR decayed from 0.1 to 0 within 200 epochs
  # `is_random`
  #   When is_random=True, the performance of a random architecture will be returned
  #   When is_random=False, the performanceo of all trials will be averaged.
  def get_more_info(self, index, dataset, iepoch=None, hp='12', is_random=True):
    if self.verbose:
      print('Call the get_more_info function with index={:}, dataset={:}, iepoch={:}, hp={:}, and is_random={:}.'.format(index, dataset, iepoch, hp, is_random))
    index = self.query_index_by_arch(index)  # To avoid the input is a string or an instance of a arch object
    if index not in self.arch2infos_dict:
      raise ValueError('Did not find {:} from arch2infos_dict.'.format(index))
    archresult = self.arch2infos_dict[index][str(hp)]
    # if randomly select one trial, select the seed at first
    if isinstance(is_random, bool) and is_random:
      seeds = archresult.get_dataset_seeds(dataset)
      is_random = random.choice(seeds)
    # collect the training information
    train_info = archresult.get_metrics(dataset, 'train', iepoch=iepoch, is_random=is_random)
    total = train_info['iepoch'] + 1
    xinfo = {'train-loss'    : train_info['loss'],
             'train-accuracy': train_info['accuracy'],
             'train-per-time': train_info['all_time'] / total if train_info['all_time'] is not None else None,
             'train-all-time': train_info['all_time']}
    # collect the evaluation information
    if dataset == 'cifar10-valid':
      valid_info = archresult.get_metrics(dataset, 'x-valid', iepoch=iepoch, is_random=is_random)
      try:
        test_info = archresult.get_metrics(dataset, 'ori-test', iepoch=iepoch, is_random=is_random)
      except:
        test_info = None
      valtest_info = None
    else:
      try: # collect results on the proposed test set
        if dataset == 'cifar10':
          test_info = archresult.get_metrics(dataset, 'ori-test', iepoch=iepoch, is_random=is_random)
        else:
          test_info = archresult.get_metrics(dataset, 'x-test', iepoch=iepoch, is_random=is_random)
      except:
        test_info = None
      try: # collect results on the proposed validation set
        valid_info = archresult.get_metrics(dataset, 'x-valid', iepoch=iepoch, is_random=is_random)
      except:
        valid_info = None
      try:
        if dataset != 'cifar10':
          valtest_info = archresult.get_metrics(dataset, 'ori-test', iepoch=iepoch, is_random=is_random)
        else:
          valtest_info = None
      except:
        valtest_info = None
    if valid_info is not None:
      xinfo['valid-loss'] = valid_info['loss']
      xinfo['valid-accuracy'] = valid_info['accuracy']
      xinfo['valid-per-time'] = valid_info['all_time'] / total if valid_info['all_time'] is not None else None
      xinfo['valid-all-time'] = valid_info['all_time']
    if test_info is not None:
      xinfo['test-loss'] = test_info['loss']
      xinfo['test-accuracy'] = test_info['accuracy']
      xinfo['test-per-time'] = test_info['all_time'] / total if test_info['all_time'] is not None else None
      xinfo['test-all-time'] = test_info['all_time']
    if valtest_info is not None:
      xinfo['valtest-loss'] = valtest_info['loss']
      xinfo['valtest-accuracy'] = valtest_info['accuracy']
      xinfo['valtest-per-time'] = valtest_info['all_time'] / total if valtest_info['all_time'] is not None else None
      xinfo['valtest-all-time'] = valtest_info['all_time']
    return xinfo

  def show(self, index: int = -1) -> None:
    """This function will print the information of a specific (or all) architecture(s)."""
    self._show(index, print_information)

  @staticmethod
  def str2lists(arch_str: Text) -> List[tuple]:
    """
    This function shows how to read the string-based architecture encoding.
      It is the same as the `str2structure` func in `AutoDL-Projects/lib/models/cell_searchs/genotypes.py`

    :param
      arch_str: the input is a string indicates the architecture topology, such as
                    |nor_conv_1x1~0|+|none~0|none~1|+|none~0|none~1|skip_connect~2|
    :return: a list of tuple, contains multiple (op, input_node_index) pairs.

    :usage
      arch = api.str2lists( '|nor_conv_1x1~0|+|none~0|none~1|+|none~0|none~1|skip_connect~2|' )
      print ('there are {:} nodes in this arch'.format(len(arch)+1)) # arch is a list
      for i, node in enumerate(arch):
        print('the {:}-th node is the sum of these {:} nodes with op: {:}'.format(i+1, len(node), node))
    """
    node_strs = arch_str.split('+')
    genotypes = []
    for i, node_str in enumerate(node_strs):
      inputs = list(filter(lambda x: x != '', node_str.split('|')))
      for xinput in inputs: assert len(xinput.split('~')) == 2, 'invalid input length : {:}'.format(xinput)
      inputs = ( xi.split('~') for xi in inputs )
      input_infos = tuple( (op, int(IDX)) for (op, IDX) in inputs)
      genotypes.append( input_infos )
    return genotypes

  @staticmethod
  def str2matrix(arch_str: Text,
                 search_space: List[Text] = ['none', 'skip_connect', 'nor_conv_1x1', 'nor_conv_3x3', 'avg_pool_3x3']) -> np.ndarray:
    """
    This func shows how to convert the string-based architecture encoding to the encoding strategy in NAS-Bench-101.

    :param
      arch_str: the input is a string indicates the architecture topology, such as
                    |nor_conv_1x1~0|+|none~0|none~1|+|none~0|none~1|skip_connect~2|
      search_space: a list of operation string, the default list is the search space for NAS-Bench-201
        the default value should be be consistent with this line https://github.com/D-X-Y/AutoDL-Projects/blob/master/lib/models/cell_operations.py#L24
    :return
      the numpy matrix (2-D np.ndarray) representing the DAG of this architecture topology
    :usage
      matrix = api.str2matrix( '|nor_conv_1x1~0|+|none~0|none~1|+|none~0|none~1|skip_connect~2|' )
      This matrix is 4-by-4 matrix representing a cell with 4 nodes (only the lower left triangle is useful).
         [ [0, 0, 0, 0],  # the first line represents the input (0-th) node
           [2, 0, 0, 0],  # the second line represents the 1-st node, is calculated by 2-th-op( 0-th-node )
           [0, 0, 0, 0],  # the third line represents the 2-nd node, is calculated by 0-th-op( 0-th-node ) + 0-th-op( 1-th-node )
           [0, 0, 1, 0] ] # the fourth line represents the 3-rd node, is calculated by 0-th-op( 0-th-node ) + 0-th-op( 1-th-node ) + 1-th-op( 2-th-node )
      In NAS-Bench-201 search space, 0-th-op is 'none', 1-th-op is 'skip_connect',
         2-th-op is 'nor_conv_1x1', 3-th-op is 'nor_conv_3x3', 4-th-op is 'avg_pool_3x3'.
    :(NOTE)
      If a node has two input-edges from the same node, this function does not work. One edge will be overlapped.
    """
    node_strs = arch_str.split('+')
    num_nodes = len(node_strs) + 1
    matrix = np.zeros((num_nodes, num_nodes))
    for i, node_str in enumerate(node_strs):
      inputs = list(filter(lambda x: x != '', node_str.split('|')))
      for xinput in inputs: assert len(xinput.split('~')) == 2, 'invalid input length : {:}'.format(xinput)
      for xi in inputs:
        op, idx = xi.split('~')
        if op not in search_space: raise ValueError('this op ({:}) is not in {:}'.format(op, search_space))
        op_idx, node_idx = search_space.index(op), int(idx)
        matrix[i+1, node_idx] = op_idx
    return matrix