#####################################################
# Copyright (c) Xuanyi Dong [GitHub D-X-Y], 2020.01 #
################################################################################################
# python exps/NAS-Bench-201/show-best.py --api_path $HOME/.torch/NAS-Bench-201-v1_0-e61699.pth #
################################################################################################
import os, sys, time, glob, random, argparse
from pathlib import Path
lib_dir = (Path(__file__).parent / '..' / '..' / 'lib').resolve()
if str(lib_dir) not in sys.path: sys.path.insert(0, str(lib_dir))
from nas_201_api  import NASBench201API as API

if __name__ == '__main__':
  parser = argparse.ArgumentParser("Analysis of NAS-Bench-201")
  parser.add_argument('--api_path',  type=str, default=None,                                         help='The path to the NAS-Bench-201 benchmark file.')
  args = parser.parse_args()

  meta_file = Path(args.api_path)
  assert meta_file.exists(), 'invalid path for api : {:}'.format(meta_file)

  api = API(str(meta_file))

  # This will show the results of the best architecture based on the validation set of each dataset.
  arch_index, accuracy = api.find_best('cifar10-valid', 'x-valid', None, None, False)
  print('FOR CIFAR-010, using the hyper-parameters with 200 training epochs :::')
  print('arch-index={:5d}, arch={:}'.format(arch_index, api.arch(arch_index)))
  api.show(arch_index)
  print('')

  arch_index, accuracy = api.find_best('cifar100', 'x-valid', None, None, False)
  print('FOR CIFAR-100, using the hyper-parameters with 200 training epochs :::')
  print('arch-index={:5d}, arch={:}'.format(arch_index, api.arch(arch_index)))
  api.show(arch_index)
  print('')

  arch_index, accuracy = api.find_best('ImageNet16-120', 'x-valid', None, None, False)
  print('FOR ImageNet16-120, using the hyper-parameters with 200 training epochs :::')
  print('arch-index={:5d}, arch={:}'.format(arch_index, api.arch(arch_index)))
  api.show(arch_index)
  print('')