##################################################### # Copyright (c) Xuanyi Dong [GitHub D-X-Y], 2019.08 # ############################################################################################### # Before run these commands, the files must be properly put. # python exps/NAS-Bench-201/test-weights.py --base_path $HOME/.torch/NAS-Bench-201-v1_0-e61699 # python exps/NAS-Bench-201/test-weights.py --base_path $HOME/.torch/NAS-Bench-201-v1_1-096897 ############################################################################################### import os, sys, time, glob, random, argparse import numpy as np import torch import torch.nn as nn from pathlib import Path from tqdm import tqdm lib_dir = (Path(__file__).parent / '..' / '..' / 'lib').resolve() if str(lib_dir) not in sys.path: sys.path.insert(0, str(lib_dir)) from procedures import prepare_seed, prepare_logger, save_checkpoint, copy_checkpoint, get_optim_scheduler from nas_201_api import NASBench201API as API from log_utils import time_string from models import get_cell_based_tiny_net from utils import weight_watcher def get_cor(A, B): return float(np.corrcoef(A, B)[0,1]) def evaluate(api, weight_dir, data: str, use_12epochs_result: bool, valid_or_test: bool): norms, accs = [], [] for idx in tqdm(range(len(api))): info = api.get_more_info(idx, data, use_12epochs_result=use_12epochs_result, is_random=False) if valid_or_test: accs.append(info['valid-accuracy']) else: accs.append(info['test-accuracy']) config = api.get_net_config(idx, data) net = get_cell_based_tiny_net(config) api.reload(weight_dir, idx) params = api.get_net_param(idx, data, None) cur_norms = [] for seed, param in params.items(): net.load_state_dict(param) _, summary = weight_watcher.analyze(net, alphas=False) cur_norms.append( summary['lognorm'] ) norms.append( float(np.mean(cur_norms)) ) api.clear_params(idx, use_12epochs_result) correlation = get_cor(norms, accs) print('For {:} with {:} epochs on {:} : the correlation is {:}'.format(data, 12 if use_12epochs_result else 200, 'valid' if valid_or_test else 'test', correlation)) def main(meta_file: str, weight_dir, save_dir): api = API(meta_file) datasets = ['cifar10-valid', 'cifar10', 'cifar100', 'ImageNet16-120'] print(time_string() + ' ' + '='*50) for data in datasets: nums = api.statistics(data, True) total = sum([k*v for k, v in nums.items()]) print('Using 012 epochs, trained on {:20s} : {:} trials in total ({:}).'.format(data, total, nums)) print(time_string() + ' ' + '='*50) for data in datasets: nums = api.statistics(data, False) total = sum([k*v for k, v in nums.items()]) print('Using 200 epochs, trained on {:20s} : {:} trials in total ({:}).'.format(data, total, nums)) print(time_string() + ' ' + '='*50) evaluate(api, weight_dir, 'cifar10-valid', False, True) print('{:} finish this test.'.format(time_string())) if __name__ == '__main__': parser = argparse.ArgumentParser("Analysis of NAS-Bench-201") parser.add_argument('--save_dir', type=str, default='./output/search-cell-nas-bench-201/visuals', help='The base-name of folder to save checkpoints and log.') parser.add_argument('--base_path', type=str, default=None, help='The path to the NAS-Bench-201 benchmark file and weight dir.') args = parser.parse_args() save_dir = Path(args.save_dir) save_dir.mkdir(parents=True, exist_ok=True) meta_file = Path(args.base_path + '.pth') weight_dir = Path(args.base_path + '-archive') assert meta_file.exists(), 'invalid path for api : {:}'.format(meta_file) assert weight_dir.exists() and weight_dir.is_dir(), 'invalid path for weight dir : {:}'.format(weight_dir) main(str(meta_file), weight_dir, save_dir)