666 lines
23 KiB
Python
666 lines
23 KiB
Python
#####################################################
|
|
# Copyright (c) Xuanyi Dong [GitHub D-X-Y], 2019.08 #
|
|
#####################################################
|
|
import os, sys, time, argparse, collections
|
|
from copy import deepcopy
|
|
import torch
|
|
from pathlib import Path
|
|
from collections import defaultdict
|
|
|
|
from xautodl.log_utils import AverageMeter, time_string, convert_secs2time
|
|
from xautodl.config_utils import load_config, dict2config
|
|
from xautodl.datasets import get_datasets
|
|
|
|
# NAS-Bench-201 related module or function
|
|
from xautodl.models import CellStructure, get_cell_based_tiny_net
|
|
from xautodl.procedures import bench_pure_evaluate as pure_evaluate
|
|
from nas_201_api import ArchResults, ResultsCount
|
|
|
|
|
|
def create_result_count(used_seed, dataset, arch_config, results, dataloader_dict):
|
|
xresult = ResultsCount(
|
|
dataset,
|
|
results["net_state_dict"],
|
|
results["train_acc1es"],
|
|
results["train_losses"],
|
|
results["param"],
|
|
results["flop"],
|
|
arch_config,
|
|
used_seed,
|
|
results["total_epoch"],
|
|
None,
|
|
)
|
|
|
|
net_config = dict2config(
|
|
{
|
|
"name": "infer.tiny",
|
|
"C": arch_config["channel"],
|
|
"N": arch_config["num_cells"],
|
|
"genotype": CellStructure.str2structure(arch_config["arch_str"]),
|
|
"num_classes": arch_config["class_num"],
|
|
},
|
|
None,
|
|
)
|
|
network = get_cell_based_tiny_net(net_config)
|
|
network.load_state_dict(xresult.get_net_param())
|
|
if "train_times" in results: # new version
|
|
xresult.update_train_info(
|
|
results["train_acc1es"],
|
|
results["train_acc5es"],
|
|
results["train_losses"],
|
|
results["train_times"],
|
|
)
|
|
xresult.update_eval(
|
|
results["valid_acc1es"], results["valid_losses"], results["valid_times"]
|
|
)
|
|
else:
|
|
if dataset == "cifar10-valid":
|
|
xresult.update_OLD_eval(
|
|
"x-valid", results["valid_acc1es"], results["valid_losses"]
|
|
)
|
|
loss, top1, top5, latencies = pure_evaluate(
|
|
dataloader_dict["{:}@{:}".format("cifar10", "test")], network.cuda()
|
|
)
|
|
xresult.update_OLD_eval(
|
|
"ori-test",
|
|
{results["total_epoch"] - 1: top1},
|
|
{results["total_epoch"] - 1: loss},
|
|
)
|
|
xresult.update_latency(latencies)
|
|
elif dataset == "cifar10":
|
|
xresult.update_OLD_eval(
|
|
"ori-test", results["valid_acc1es"], results["valid_losses"]
|
|
)
|
|
loss, top1, top5, latencies = pure_evaluate(
|
|
dataloader_dict["{:}@{:}".format(dataset, "test")], network.cuda()
|
|
)
|
|
xresult.update_latency(latencies)
|
|
elif dataset == "cifar100" or dataset == "ImageNet16-120":
|
|
xresult.update_OLD_eval(
|
|
"ori-test", results["valid_acc1es"], results["valid_losses"]
|
|
)
|
|
loss, top1, top5, latencies = pure_evaluate(
|
|
dataloader_dict["{:}@{:}".format(dataset, "valid")], network.cuda()
|
|
)
|
|
xresult.update_OLD_eval(
|
|
"x-valid",
|
|
{results["total_epoch"] - 1: top1},
|
|
{results["total_epoch"] - 1: loss},
|
|
)
|
|
loss, top1, top5, latencies = pure_evaluate(
|
|
dataloader_dict["{:}@{:}".format(dataset, "test")], network.cuda()
|
|
)
|
|
xresult.update_OLD_eval(
|
|
"x-test",
|
|
{results["total_epoch"] - 1: top1},
|
|
{results["total_epoch"] - 1: loss},
|
|
)
|
|
xresult.update_latency(latencies)
|
|
else:
|
|
raise ValueError("invalid dataset name : {:}".format(dataset))
|
|
return xresult
|
|
|
|
|
|
def account_one_arch(arch_index, arch_str, checkpoints, datasets, dataloader_dict):
|
|
information = ArchResults(arch_index, arch_str)
|
|
|
|
for checkpoint_path in checkpoints:
|
|
checkpoint = torch.load(checkpoint_path, map_location="cpu")
|
|
used_seed = checkpoint_path.name.split("-")[-1].split(".")[0]
|
|
for dataset in datasets:
|
|
assert (
|
|
dataset in checkpoint
|
|
), "Can not find {:} in arch-{:} from {:}".format(
|
|
dataset, arch_index, checkpoint_path
|
|
)
|
|
results = checkpoint[dataset]
|
|
assert results[
|
|
"finish-train"
|
|
], "This {:} arch seed={:} does not finish train on {:} ::: {:}".format(
|
|
arch_index, used_seed, dataset, checkpoint_path
|
|
)
|
|
arch_config = {
|
|
"channel": results["channel"],
|
|
"num_cells": results["num_cells"],
|
|
"arch_str": arch_str,
|
|
"class_num": results["config"]["class_num"],
|
|
}
|
|
|
|
xresult = create_result_count(
|
|
used_seed, dataset, arch_config, results, dataloader_dict
|
|
)
|
|
information.update(dataset, int(used_seed), xresult)
|
|
return information
|
|
|
|
|
|
def GET_DataLoaders(workers):
|
|
|
|
torch.set_num_threads(workers)
|
|
|
|
root_dir = (Path(__file__).parent / ".." / "..").resolve()
|
|
torch_dir = Path(os.environ["TORCH_HOME"])
|
|
# cifar
|
|
cifar_config_path = root_dir / "configs" / "nas-benchmark" / "CIFAR.config"
|
|
cifar_config = load_config(cifar_config_path, None, None)
|
|
print("{:} Create data-loader for all datasets".format(time_string()))
|
|
print("-" * 200)
|
|
TRAIN_CIFAR10, VALID_CIFAR10, xshape, class_num = get_datasets(
|
|
"cifar10", str(torch_dir / "cifar.python"), -1
|
|
)
|
|
print(
|
|
"original CIFAR-10 : {:} training images and {:} test images : {:} input shape : {:} number of classes".format(
|
|
len(TRAIN_CIFAR10), len(VALID_CIFAR10), xshape, class_num
|
|
)
|
|
)
|
|
cifar10_splits = load_config(
|
|
root_dir / "configs" / "nas-benchmark" / "cifar-split.txt", None, None
|
|
)
|
|
assert cifar10_splits.train[:10] == [
|
|
0,
|
|
5,
|
|
7,
|
|
11,
|
|
13,
|
|
15,
|
|
16,
|
|
17,
|
|
20,
|
|
24,
|
|
] and cifar10_splits.valid[:10] == [
|
|
1,
|
|
2,
|
|
3,
|
|
4,
|
|
6,
|
|
8,
|
|
9,
|
|
10,
|
|
12,
|
|
14,
|
|
]
|
|
temp_dataset = deepcopy(TRAIN_CIFAR10)
|
|
temp_dataset.transform = VALID_CIFAR10.transform
|
|
# data loader
|
|
trainval_cifar10_loader = torch.utils.data.DataLoader(
|
|
TRAIN_CIFAR10,
|
|
batch_size=cifar_config.batch_size,
|
|
shuffle=True,
|
|
num_workers=workers,
|
|
pin_memory=True,
|
|
)
|
|
train_cifar10_loader = torch.utils.data.DataLoader(
|
|
TRAIN_CIFAR10,
|
|
batch_size=cifar_config.batch_size,
|
|
sampler=torch.utils.data.sampler.SubsetRandomSampler(cifar10_splits.train),
|
|
num_workers=workers,
|
|
pin_memory=True,
|
|
)
|
|
valid_cifar10_loader = torch.utils.data.DataLoader(
|
|
temp_dataset,
|
|
batch_size=cifar_config.batch_size,
|
|
sampler=torch.utils.data.sampler.SubsetRandomSampler(cifar10_splits.valid),
|
|
num_workers=workers,
|
|
pin_memory=True,
|
|
)
|
|
test__cifar10_loader = torch.utils.data.DataLoader(
|
|
VALID_CIFAR10,
|
|
batch_size=cifar_config.batch_size,
|
|
shuffle=False,
|
|
num_workers=workers,
|
|
pin_memory=True,
|
|
)
|
|
print(
|
|
"CIFAR-10 : trval-loader has {:3d} batch with {:} per batch".format(
|
|
len(trainval_cifar10_loader), cifar_config.batch_size
|
|
)
|
|
)
|
|
print(
|
|
"CIFAR-10 : train-loader has {:3d} batch with {:} per batch".format(
|
|
len(train_cifar10_loader), cifar_config.batch_size
|
|
)
|
|
)
|
|
print(
|
|
"CIFAR-10 : valid-loader has {:3d} batch with {:} per batch".format(
|
|
len(valid_cifar10_loader), cifar_config.batch_size
|
|
)
|
|
)
|
|
print(
|
|
"CIFAR-10 : test--loader has {:3d} batch with {:} per batch".format(
|
|
len(test__cifar10_loader), cifar_config.batch_size
|
|
)
|
|
)
|
|
print("-" * 200)
|
|
# CIFAR-100
|
|
TRAIN_CIFAR100, VALID_CIFAR100, xshape, class_num = get_datasets(
|
|
"cifar100", str(torch_dir / "cifar.python"), -1
|
|
)
|
|
print(
|
|
"original CIFAR-100: {:} training images and {:} test images : {:} input shape : {:} number of classes".format(
|
|
len(TRAIN_CIFAR100), len(VALID_CIFAR100), xshape, class_num
|
|
)
|
|
)
|
|
cifar100_splits = load_config(
|
|
root_dir / "configs" / "nas-benchmark" / "cifar100-test-split.txt", None, None
|
|
)
|
|
assert cifar100_splits.xvalid[:10] == [
|
|
1,
|
|
3,
|
|
4,
|
|
5,
|
|
8,
|
|
10,
|
|
13,
|
|
14,
|
|
15,
|
|
16,
|
|
] and cifar100_splits.xtest[:10] == [
|
|
0,
|
|
2,
|
|
6,
|
|
7,
|
|
9,
|
|
11,
|
|
12,
|
|
17,
|
|
20,
|
|
24,
|
|
]
|
|
train_cifar100_loader = torch.utils.data.DataLoader(
|
|
TRAIN_CIFAR100,
|
|
batch_size=cifar_config.batch_size,
|
|
shuffle=True,
|
|
num_workers=workers,
|
|
pin_memory=True,
|
|
)
|
|
valid_cifar100_loader = torch.utils.data.DataLoader(
|
|
VALID_CIFAR100,
|
|
batch_size=cifar_config.batch_size,
|
|
sampler=torch.utils.data.sampler.SubsetRandomSampler(cifar100_splits.xvalid),
|
|
num_workers=workers,
|
|
pin_memory=True,
|
|
)
|
|
test__cifar100_loader = torch.utils.data.DataLoader(
|
|
VALID_CIFAR100,
|
|
batch_size=cifar_config.batch_size,
|
|
sampler=torch.utils.data.sampler.SubsetRandomSampler(cifar100_splits.xtest),
|
|
num_workers=workers,
|
|
pin_memory=True,
|
|
)
|
|
print(
|
|
"CIFAR-100 : train-loader has {:3d} batch".format(len(train_cifar100_loader))
|
|
)
|
|
print(
|
|
"CIFAR-100 : valid-loader has {:3d} batch".format(len(valid_cifar100_loader))
|
|
)
|
|
print(
|
|
"CIFAR-100 : test--loader has {:3d} batch".format(len(test__cifar100_loader))
|
|
)
|
|
print("-" * 200)
|
|
|
|
imagenet16_config_path = "configs/nas-benchmark/ImageNet-16.config"
|
|
imagenet16_config = load_config(imagenet16_config_path, None, None)
|
|
TRAIN_ImageNet16_120, VALID_ImageNet16_120, xshape, class_num = get_datasets(
|
|
"ImageNet16-120", str(torch_dir / "cifar.python" / "ImageNet16"), -1
|
|
)
|
|
print(
|
|
"original TRAIN_ImageNet16_120: {:} training images and {:} test images : {:} input shape : {:} number of classes".format(
|
|
len(TRAIN_ImageNet16_120), len(VALID_ImageNet16_120), xshape, class_num
|
|
)
|
|
)
|
|
imagenet_splits = load_config(
|
|
root_dir / "configs" / "nas-benchmark" / "imagenet-16-120-test-split.txt",
|
|
None,
|
|
None,
|
|
)
|
|
assert imagenet_splits.xvalid[:10] == [
|
|
1,
|
|
2,
|
|
3,
|
|
6,
|
|
7,
|
|
8,
|
|
9,
|
|
12,
|
|
16,
|
|
18,
|
|
] and imagenet_splits.xtest[:10] == [
|
|
0,
|
|
4,
|
|
5,
|
|
10,
|
|
11,
|
|
13,
|
|
14,
|
|
15,
|
|
17,
|
|
20,
|
|
]
|
|
train_imagenet_loader = torch.utils.data.DataLoader(
|
|
TRAIN_ImageNet16_120,
|
|
batch_size=imagenet16_config.batch_size,
|
|
shuffle=True,
|
|
num_workers=workers,
|
|
pin_memory=True,
|
|
)
|
|
valid_imagenet_loader = torch.utils.data.DataLoader(
|
|
VALID_ImageNet16_120,
|
|
batch_size=imagenet16_config.batch_size,
|
|
sampler=torch.utils.data.sampler.SubsetRandomSampler(imagenet_splits.xvalid),
|
|
num_workers=workers,
|
|
pin_memory=True,
|
|
)
|
|
test__imagenet_loader = torch.utils.data.DataLoader(
|
|
VALID_ImageNet16_120,
|
|
batch_size=imagenet16_config.batch_size,
|
|
sampler=torch.utils.data.sampler.SubsetRandomSampler(imagenet_splits.xtest),
|
|
num_workers=workers,
|
|
pin_memory=True,
|
|
)
|
|
print(
|
|
"ImageNet-16-120 : train-loader has {:3d} batch with {:} per batch".format(
|
|
len(train_imagenet_loader), imagenet16_config.batch_size
|
|
)
|
|
)
|
|
print(
|
|
"ImageNet-16-120 : valid-loader has {:3d} batch with {:} per batch".format(
|
|
len(valid_imagenet_loader), imagenet16_config.batch_size
|
|
)
|
|
)
|
|
print(
|
|
"ImageNet-16-120 : test--loader has {:3d} batch with {:} per batch".format(
|
|
len(test__imagenet_loader), imagenet16_config.batch_size
|
|
)
|
|
)
|
|
|
|
# 'cifar10', 'cifar100', 'ImageNet16-120'
|
|
loaders = {
|
|
"cifar10@trainval": trainval_cifar10_loader,
|
|
"cifar10@train": train_cifar10_loader,
|
|
"cifar10@valid": valid_cifar10_loader,
|
|
"cifar10@test": test__cifar10_loader,
|
|
"cifar100@train": train_cifar100_loader,
|
|
"cifar100@valid": valid_cifar100_loader,
|
|
"cifar100@test": test__cifar100_loader,
|
|
"ImageNet16-120@train": train_imagenet_loader,
|
|
"ImageNet16-120@valid": valid_imagenet_loader,
|
|
"ImageNet16-120@test": test__imagenet_loader,
|
|
}
|
|
return loaders
|
|
|
|
|
|
def simplify(save_dir, meta_file, basestr, target_dir):
|
|
meta_infos = torch.load(meta_file, map_location="cpu")
|
|
meta_archs = meta_infos["archs"] # a list of architecture strings
|
|
meta_num_archs = meta_infos["total"]
|
|
meta_max_node = meta_infos["max_node"]
|
|
assert meta_num_archs == len(
|
|
meta_archs
|
|
), "invalid number of archs : {:} vs {:}".format(meta_num_archs, len(meta_archs))
|
|
|
|
sub_model_dirs = sorted(list(save_dir.glob("*-*-{:}".format(basestr))))
|
|
print(
|
|
"{:} find {:} directories used to save checkpoints".format(
|
|
time_string(), len(sub_model_dirs)
|
|
)
|
|
)
|
|
|
|
subdir2archs, num_evaluated_arch = collections.OrderedDict(), 0
|
|
num_seeds = defaultdict(lambda: 0)
|
|
for index, sub_dir in enumerate(sub_model_dirs):
|
|
xcheckpoints = list(sub_dir.glob("arch-*-seed-*.pth"))
|
|
arch_indexes = set()
|
|
for checkpoint in xcheckpoints:
|
|
temp_names = checkpoint.name.split("-")
|
|
assert (
|
|
len(temp_names) == 4
|
|
and temp_names[0] == "arch"
|
|
and temp_names[2] == "seed"
|
|
), "invalid checkpoint name : {:}".format(checkpoint.name)
|
|
arch_indexes.add(temp_names[1])
|
|
subdir2archs[sub_dir] = sorted(list(arch_indexes))
|
|
num_evaluated_arch += len(arch_indexes)
|
|
# count number of seeds for each architecture
|
|
for arch_index in arch_indexes:
|
|
num_seeds[
|
|
len(list(sub_dir.glob("arch-{:}-seed-*.pth".format(arch_index))))
|
|
] += 1
|
|
print(
|
|
"{:} There are {:5d} architectures that have been evaluated ({:} in total).".format(
|
|
time_string(), num_evaluated_arch, meta_num_archs
|
|
)
|
|
)
|
|
for key in sorted(list(num_seeds.keys())):
|
|
print(
|
|
"{:} There are {:5d} architectures that are evaluated {:} times.".format(
|
|
time_string(), num_seeds[key], key
|
|
)
|
|
)
|
|
|
|
dataloader_dict = GET_DataLoaders(6)
|
|
|
|
to_save_simply = save_dir / "simplifies"
|
|
to_save_allarc = save_dir / "simplifies" / "architectures"
|
|
if not to_save_simply.exists():
|
|
to_save_simply.mkdir(parents=True, exist_ok=True)
|
|
if not to_save_allarc.exists():
|
|
to_save_allarc.mkdir(parents=True, exist_ok=True)
|
|
|
|
assert (save_dir / target_dir) in subdir2archs, "can not find {:}".format(
|
|
target_dir
|
|
)
|
|
arch2infos, datasets = {}, (
|
|
"cifar10-valid",
|
|
"cifar10",
|
|
"cifar100",
|
|
"ImageNet16-120",
|
|
)
|
|
evaluated_indexes = set()
|
|
target_directory = save_dir / target_dir
|
|
target_less_dir = save_dir / "{:}-LESS".format(target_dir)
|
|
arch_indexes = subdir2archs[target_directory]
|
|
num_seeds = defaultdict(lambda: 0)
|
|
end_time = time.time()
|
|
arch_time = AverageMeter()
|
|
for idx, arch_index in enumerate(arch_indexes):
|
|
checkpoints = list(
|
|
target_directory.glob("arch-{:}-seed-*.pth".format(arch_index))
|
|
)
|
|
ckps_less = list(target_less_dir.glob("arch-{:}-seed-*.pth".format(arch_index)))
|
|
# create the arch info for each architecture
|
|
try:
|
|
arch_info_full = account_one_arch(
|
|
arch_index,
|
|
meta_archs[int(arch_index)],
|
|
checkpoints,
|
|
datasets,
|
|
dataloader_dict,
|
|
)
|
|
arch_info_less = account_one_arch(
|
|
arch_index,
|
|
meta_archs[int(arch_index)],
|
|
ckps_less,
|
|
["cifar10-valid"],
|
|
dataloader_dict,
|
|
)
|
|
num_seeds[len(checkpoints)] += 1
|
|
except:
|
|
print("Loading {:} failed, : {:}".format(arch_index, checkpoints))
|
|
continue
|
|
assert (
|
|
int(arch_index) not in evaluated_indexes
|
|
), "conflict arch-index : {:}".format(arch_index)
|
|
assert (
|
|
0 <= int(arch_index) < len(meta_archs)
|
|
), "invalid arch-index {:} (not found in meta_archs)".format(arch_index)
|
|
arch_info = {"full": arch_info_full, "less": arch_info_less}
|
|
evaluated_indexes.add(int(arch_index))
|
|
arch2infos[int(arch_index)] = arch_info
|
|
torch.save(
|
|
{"full": arch_info_full.state_dict(), "less": arch_info_less.state_dict()},
|
|
to_save_allarc / "{:}-FULL.pth".format(arch_index),
|
|
)
|
|
arch_info["full"].clear_params()
|
|
arch_info["less"].clear_params()
|
|
torch.save(
|
|
{"full": arch_info_full.state_dict(), "less": arch_info_less.state_dict()},
|
|
to_save_allarc / "{:}-SIMPLE.pth".format(arch_index),
|
|
)
|
|
# measure elapsed time
|
|
arch_time.update(time.time() - end_time)
|
|
end_time = time.time()
|
|
need_time = "{:}".format(
|
|
convert_secs2time(arch_time.avg * (len(arch_indexes) - idx - 1), True)
|
|
)
|
|
print(
|
|
"{:} {:} [{:03d}/{:03d}] : {:} still need {:}".format(
|
|
time_string(), target_dir, idx, len(arch_indexes), arch_index, need_time
|
|
)
|
|
)
|
|
# measure time
|
|
xstrs = [
|
|
"{:}:{:03d}".format(key, num_seeds[key])
|
|
for key in sorted(list(num_seeds.keys()))
|
|
]
|
|
print("{:} {:} done : {:}".format(time_string(), target_dir, xstrs))
|
|
final_infos = {
|
|
"meta_archs": meta_archs,
|
|
"total_archs": meta_num_archs,
|
|
"basestr": basestr,
|
|
"arch2infos": arch2infos,
|
|
"evaluated_indexes": evaluated_indexes,
|
|
}
|
|
save_file_name = to_save_simply / "{:}.pth".format(target_dir)
|
|
torch.save(final_infos, save_file_name)
|
|
print(
|
|
"Save {:} / {:} architecture results into {:}.".format(
|
|
len(evaluated_indexes), meta_num_archs, save_file_name
|
|
)
|
|
)
|
|
|
|
|
|
def merge_all(save_dir, meta_file, basestr):
|
|
meta_infos = torch.load(meta_file, map_location="cpu")
|
|
meta_archs = meta_infos["archs"]
|
|
meta_num_archs = meta_infos["total"]
|
|
meta_max_node = meta_infos["max_node"]
|
|
assert meta_num_archs == len(
|
|
meta_archs
|
|
), "invalid number of archs : {:} vs {:}".format(meta_num_archs, len(meta_archs))
|
|
|
|
sub_model_dirs = sorted(list(save_dir.glob("*-*-{:}".format(basestr))))
|
|
print(
|
|
"{:} find {:} directories used to save checkpoints".format(
|
|
time_string(), len(sub_model_dirs)
|
|
)
|
|
)
|
|
for index, sub_dir in enumerate(sub_model_dirs):
|
|
arch_info_files = sorted(list(sub_dir.glob("arch-*-seed-*.pth")))
|
|
print(
|
|
"The {:02d}/{:02d}-th directory : {:} : {:} runs.".format(
|
|
index, len(sub_model_dirs), sub_dir, len(arch_info_files)
|
|
)
|
|
)
|
|
|
|
arch2infos, evaluated_indexes = dict(), set()
|
|
for IDX, sub_dir in enumerate(sub_model_dirs):
|
|
ckp_path = sub_dir.parent / "simplifies" / "{:}.pth".format(sub_dir.name)
|
|
if ckp_path.exists():
|
|
sub_ckps = torch.load(ckp_path, map_location="cpu")
|
|
assert (
|
|
sub_ckps["total_archs"] == meta_num_archs
|
|
and sub_ckps["basestr"] == basestr
|
|
)
|
|
xarch2infos = sub_ckps["arch2infos"]
|
|
xevalindexs = sub_ckps["evaluated_indexes"]
|
|
for eval_index in xevalindexs:
|
|
assert (
|
|
eval_index not in evaluated_indexes and eval_index not in arch2infos
|
|
)
|
|
# arch2infos[eval_index] = xarch2infos[eval_index].state_dict()
|
|
arch2infos[eval_index] = {
|
|
"full": xarch2infos[eval_index]["full"].state_dict(),
|
|
"less": xarch2infos[eval_index]["less"].state_dict(),
|
|
}
|
|
evaluated_indexes.add(eval_index)
|
|
print(
|
|
"{:} [{:03d}/{:03d}] merge data from {:} with {:} models.".format(
|
|
time_string(), IDX, len(sub_model_dirs), ckp_path, len(xevalindexs)
|
|
)
|
|
)
|
|
else:
|
|
raise ValueError("Can not find {:}".format(ckp_path))
|
|
# print ('{:} [{:03d}/{:03d}] can not find {:}, skip.'.format(time_string(), IDX, len(subdir2archs), ckp_path))
|
|
|
|
evaluated_indexes = sorted(list(evaluated_indexes))
|
|
print(
|
|
"Finally, there are {:} architectures that have been trained and evaluated.".format(
|
|
len(evaluated_indexes)
|
|
)
|
|
)
|
|
|
|
to_save_simply = save_dir / "simplifies"
|
|
if not to_save_simply.exists():
|
|
to_save_simply.mkdir(parents=True, exist_ok=True)
|
|
final_infos = {
|
|
"meta_archs": meta_archs,
|
|
"total_archs": meta_num_archs,
|
|
"arch2infos": arch2infos,
|
|
"evaluated_indexes": evaluated_indexes,
|
|
}
|
|
save_file_name = to_save_simply / "{:}-final-infos.pth".format(basestr)
|
|
torch.save(final_infos, save_file_name)
|
|
print(
|
|
"Save {:} / {:} architecture results into {:}.".format(
|
|
len(evaluated_indexes), meta_num_archs, save_file_name
|
|
)
|
|
)
|
|
|
|
|
|
if __name__ == "__main__":
|
|
|
|
parser = argparse.ArgumentParser(
|
|
description="NAS-BENCH-201",
|
|
formatter_class=argparse.ArgumentDefaultsHelpFormatter,
|
|
)
|
|
parser.add_argument(
|
|
"--mode",
|
|
type=str,
|
|
choices=["cal", "merge"],
|
|
help="The running mode for this script.",
|
|
)
|
|
parser.add_argument(
|
|
"--base_save_dir",
|
|
type=str,
|
|
default="./output/NAS-BENCH-201-4",
|
|
help="The base-name of folder to save checkpoints and log.",
|
|
)
|
|
parser.add_argument("--target_dir", type=str, help="The target directory.")
|
|
parser.add_argument(
|
|
"--max_node", type=int, default=4, help="The maximum node in a cell."
|
|
)
|
|
parser.add_argument(
|
|
"--channel", type=int, default=16, help="The number of channels."
|
|
)
|
|
parser.add_argument(
|
|
"--num_cells", type=int, default=5, help="The number of cells in one stage."
|
|
)
|
|
args = parser.parse_args()
|
|
|
|
save_dir = Path(args.base_save_dir)
|
|
meta_path = save_dir / "meta-node-{:}.pth".format(args.max_node)
|
|
assert save_dir.exists(), "invalid save dir path : {:}".format(save_dir)
|
|
assert meta_path.exists(), "invalid saved meta path : {:}".format(meta_path)
|
|
print(
|
|
"start the statistics of our nas-benchmark from {:} using {:}.".format(
|
|
save_dir, args.target_dir
|
|
)
|
|
)
|
|
basestr = "C{:}-N{:}".format(args.channel, args.num_cells)
|
|
|
|
if args.mode == "cal":
|
|
simplify(save_dir, meta_path, basestr, args.target_dir)
|
|
elif args.mode == "merge":
|
|
merge_all(save_dir, meta_path, basestr)
|
|
else:
|
|
raise ValueError("invalid mode : {:}".format(args.mode))
|