652 lines
24 KiB
Python
652 lines
24 KiB
Python
###############################################################
|
|
# NATS-Bench (arxiv.org/pdf/2009.00437.pdf), IEEE TPAMI 2021 #
|
|
# The code to draw Figure 2 / 3 / 4 / 5 in our paper. #
|
|
###############################################################
|
|
# Copyright (c) Xuanyi Dong [GitHub D-X-Y], 2020.06 #
|
|
###############################################################
|
|
# Usage: python exps/NATS-Bench/draw-fig2_5.py #
|
|
###############################################################
|
|
import os, sys, time, torch, argparse
|
|
import scipy
|
|
import numpy as np
|
|
from typing import List, Text, Dict, Any
|
|
from shutil import copyfile
|
|
from collections import defaultdict
|
|
from copy import deepcopy
|
|
from pathlib import Path
|
|
import matplotlib
|
|
import seaborn as sns
|
|
|
|
matplotlib.use("agg")
|
|
import matplotlib.pyplot as plt
|
|
import matplotlib.ticker as ticker
|
|
from xautodl.config_utils import dict2config, load_config
|
|
from xautodl.log_utils import time_string
|
|
from xautodl.models import get_cell_based_tiny_net
|
|
from nats_bench import create
|
|
|
|
|
|
def visualize_relative_info(api, vis_save_dir, indicator):
|
|
vis_save_dir = vis_save_dir.resolve()
|
|
# print ('{:} start to visualize {:} information'.format(time_string(), api))
|
|
vis_save_dir.mkdir(parents=True, exist_ok=True)
|
|
|
|
cifar010_cache_path = vis_save_dir / "{:}-cache-{:}-info.pth".format(
|
|
"cifar10", indicator
|
|
)
|
|
cifar100_cache_path = vis_save_dir / "{:}-cache-{:}-info.pth".format(
|
|
"cifar100", indicator
|
|
)
|
|
imagenet_cache_path = vis_save_dir / "{:}-cache-{:}-info.pth".format(
|
|
"ImageNet16-120", indicator
|
|
)
|
|
cifar010_info = torch.load(cifar010_cache_path)
|
|
cifar100_info = torch.load(cifar100_cache_path)
|
|
imagenet_info = torch.load(imagenet_cache_path)
|
|
indexes = list(range(len(cifar010_info["params"])))
|
|
|
|
print("{:} start to visualize relative ranking".format(time_string()))
|
|
|
|
cifar010_ord_indexes = sorted(indexes, key=lambda i: cifar010_info["test_accs"][i])
|
|
cifar100_ord_indexes = sorted(indexes, key=lambda i: cifar100_info["test_accs"][i])
|
|
imagenet_ord_indexes = sorted(indexes, key=lambda i: imagenet_info["test_accs"][i])
|
|
|
|
cifar100_labels, imagenet_labels = [], []
|
|
for idx in cifar010_ord_indexes:
|
|
cifar100_labels.append(cifar100_ord_indexes.index(idx))
|
|
imagenet_labels.append(imagenet_ord_indexes.index(idx))
|
|
print("{:} prepare data done.".format(time_string()))
|
|
|
|
dpi, width, height = 200, 1400, 800
|
|
figsize = width / float(dpi), height / float(dpi)
|
|
LabelSize, LegendFontsize = 18, 12
|
|
resnet_scale, resnet_alpha = 120, 0.5
|
|
|
|
fig = plt.figure(figsize=figsize)
|
|
ax = fig.add_subplot(111)
|
|
plt.xlim(min(indexes), max(indexes))
|
|
plt.ylim(min(indexes), max(indexes))
|
|
# plt.ylabel('y').set_rotation(30)
|
|
plt.yticks(
|
|
np.arange(min(indexes), max(indexes), max(indexes) // 3),
|
|
fontsize=LegendFontsize,
|
|
rotation="vertical",
|
|
)
|
|
plt.xticks(
|
|
np.arange(min(indexes), max(indexes), max(indexes) // 5),
|
|
fontsize=LegendFontsize,
|
|
)
|
|
ax.scatter(indexes, cifar100_labels, marker="^", s=0.5, c="tab:green", alpha=0.8)
|
|
ax.scatter(indexes, imagenet_labels, marker="*", s=0.5, c="tab:red", alpha=0.8)
|
|
ax.scatter(indexes, indexes, marker="o", s=0.5, c="tab:blue", alpha=0.8)
|
|
ax.scatter([-1], [-1], marker="o", s=100, c="tab:blue", label="CIFAR-10")
|
|
ax.scatter([-1], [-1], marker="^", s=100, c="tab:green", label="CIFAR-100")
|
|
ax.scatter([-1], [-1], marker="*", s=100, c="tab:red", label="ImageNet-16-120")
|
|
plt.grid(zorder=0)
|
|
ax.set_axisbelow(True)
|
|
plt.legend(loc=0, fontsize=LegendFontsize)
|
|
ax.set_xlabel("architecture ranking in CIFAR-10", fontsize=LabelSize)
|
|
ax.set_ylabel("architecture ranking", fontsize=LabelSize)
|
|
save_path = (vis_save_dir / "{:}-relative-rank.pdf".format(indicator)).resolve()
|
|
fig.savefig(save_path, dpi=dpi, bbox_inches="tight", format="pdf")
|
|
save_path = (vis_save_dir / "{:}-relative-rank.png".format(indicator)).resolve()
|
|
fig.savefig(save_path, dpi=dpi, bbox_inches="tight", format="png")
|
|
print("{:} save into {:}".format(time_string(), save_path))
|
|
|
|
|
|
def visualize_sss_info(api, dataset, vis_save_dir):
|
|
vis_save_dir = vis_save_dir.resolve()
|
|
print("{:} start to visualize {:} information".format(time_string(), dataset))
|
|
vis_save_dir.mkdir(parents=True, exist_ok=True)
|
|
cache_file_path = vis_save_dir / "{:}-cache-sss-info.pth".format(dataset)
|
|
if not cache_file_path.exists():
|
|
print("Do not find cache file : {:}".format(cache_file_path))
|
|
params, flops, train_accs, valid_accs, test_accs = [], [], [], [], []
|
|
for index in range(len(api)):
|
|
cost_info = api.get_cost_info(index, dataset, hp="90")
|
|
params.append(cost_info["params"])
|
|
flops.append(cost_info["flops"])
|
|
# accuracy
|
|
info = api.get_more_info(index, dataset, hp="90", is_random=False)
|
|
train_accs.append(info["train-accuracy"])
|
|
test_accs.append(info["test-accuracy"])
|
|
if dataset == "cifar10":
|
|
info = api.get_more_info(
|
|
index, "cifar10-valid", hp="90", is_random=False
|
|
)
|
|
valid_accs.append(info["valid-accuracy"])
|
|
else:
|
|
valid_accs.append(info["valid-accuracy"])
|
|
info = {
|
|
"params": params,
|
|
"flops": flops,
|
|
"train_accs": train_accs,
|
|
"valid_accs": valid_accs,
|
|
"test_accs": test_accs,
|
|
}
|
|
torch.save(info, cache_file_path)
|
|
else:
|
|
print("Find cache file : {:}".format(cache_file_path))
|
|
info = torch.load(cache_file_path)
|
|
params, flops, train_accs, valid_accs, test_accs = (
|
|
info["params"],
|
|
info["flops"],
|
|
info["train_accs"],
|
|
info["valid_accs"],
|
|
info["test_accs"],
|
|
)
|
|
print("{:} collect data done.".format(time_string()))
|
|
|
|
# pyramid = ['8:16:32:48:64', '8:8:16:32:48', '8:8:16:16:32', '8:8:16:16:48', '8:8:16:16:64', '16:16:32:32:64', '32:32:64:64:64']
|
|
pyramid = ["8:16:24:32:40", "8:16:32:48:64", "32:40:48:56:64"]
|
|
pyramid_indexes = [api.query_index_by_arch(x) for x in pyramid]
|
|
largest_indexes = [api.query_index_by_arch("64:64:64:64:64")]
|
|
|
|
indexes = list(range(len(params)))
|
|
dpi, width, height = 250, 8500, 1300
|
|
figsize = width / float(dpi), height / float(dpi)
|
|
LabelSize, LegendFontsize = 24, 24
|
|
# resnet_scale, resnet_alpha = 120, 0.5
|
|
xscale, xalpha = 120, 0.8
|
|
|
|
fig, axs = plt.subplots(1, 4, figsize=figsize)
|
|
# ax1, ax2, ax3, ax4, ax5 = axs
|
|
for ax in axs:
|
|
for tick in ax.xaxis.get_major_ticks():
|
|
tick.label.set_fontsize(LabelSize)
|
|
ax.yaxis.set_major_formatter(ticker.FormatStrFormatter("%.0f"))
|
|
for tick in ax.yaxis.get_major_ticks():
|
|
tick.label.set_fontsize(LabelSize)
|
|
ax1, ax2, ax3, ax4 = axs
|
|
|
|
ax1.scatter(params, train_accs, marker="o", s=0.5, c="tab:blue")
|
|
ax1.scatter(
|
|
[params[x] for x in pyramid_indexes],
|
|
[train_accs[x] for x in pyramid_indexes],
|
|
marker="*",
|
|
s=xscale,
|
|
c="tab:orange",
|
|
label="Pyramid Structure",
|
|
alpha=xalpha,
|
|
)
|
|
ax1.scatter(
|
|
[params[x] for x in largest_indexes],
|
|
[train_accs[x] for x in largest_indexes],
|
|
marker="x",
|
|
s=xscale,
|
|
c="tab:green",
|
|
label="Largest Candidate",
|
|
alpha=xalpha,
|
|
)
|
|
ax1.set_xlabel("#parameters (MB)", fontsize=LabelSize)
|
|
ax1.set_ylabel("train accuracy (%)", fontsize=LabelSize)
|
|
ax1.legend(loc=4, fontsize=LegendFontsize)
|
|
|
|
ax2.scatter(flops, train_accs, marker="o", s=0.5, c="tab:blue")
|
|
ax2.scatter(
|
|
[flops[x] for x in pyramid_indexes],
|
|
[train_accs[x] for x in pyramid_indexes],
|
|
marker="*",
|
|
s=xscale,
|
|
c="tab:orange",
|
|
label="Pyramid Structure",
|
|
alpha=xalpha,
|
|
)
|
|
ax2.scatter(
|
|
[flops[x] for x in largest_indexes],
|
|
[train_accs[x] for x in largest_indexes],
|
|
marker="x",
|
|
s=xscale,
|
|
c="tab:green",
|
|
label="Largest Candidate",
|
|
alpha=xalpha,
|
|
)
|
|
ax2.set_xlabel("#FLOPs (M)", fontsize=LabelSize)
|
|
# ax2.set_ylabel('train accuracy (%)', fontsize=LabelSize)
|
|
ax2.legend(loc=4, fontsize=LegendFontsize)
|
|
|
|
ax3.scatter(params, test_accs, marker="o", s=0.5, c="tab:blue")
|
|
ax3.scatter(
|
|
[params[x] for x in pyramid_indexes],
|
|
[test_accs[x] for x in pyramid_indexes],
|
|
marker="*",
|
|
s=xscale,
|
|
c="tab:orange",
|
|
label="Pyramid Structure",
|
|
alpha=xalpha,
|
|
)
|
|
ax3.scatter(
|
|
[params[x] for x in largest_indexes],
|
|
[test_accs[x] for x in largest_indexes],
|
|
marker="x",
|
|
s=xscale,
|
|
c="tab:green",
|
|
label="Largest Candidate",
|
|
alpha=xalpha,
|
|
)
|
|
ax3.set_xlabel("#parameters (MB)", fontsize=LabelSize)
|
|
ax3.set_ylabel("test accuracy (%)", fontsize=LabelSize)
|
|
ax3.legend(loc=4, fontsize=LegendFontsize)
|
|
|
|
ax4.scatter(flops, test_accs, marker="o", s=0.5, c="tab:blue")
|
|
ax4.scatter(
|
|
[flops[x] for x in pyramid_indexes],
|
|
[test_accs[x] for x in pyramid_indexes],
|
|
marker="*",
|
|
s=xscale,
|
|
c="tab:orange",
|
|
label="Pyramid Structure",
|
|
alpha=xalpha,
|
|
)
|
|
ax4.scatter(
|
|
[flops[x] for x in largest_indexes],
|
|
[test_accs[x] for x in largest_indexes],
|
|
marker="x",
|
|
s=xscale,
|
|
c="tab:green",
|
|
label="Largest Candidate",
|
|
alpha=xalpha,
|
|
)
|
|
ax4.set_xlabel("#FLOPs (M)", fontsize=LabelSize)
|
|
# ax4.set_ylabel('test accuracy (%)', fontsize=LabelSize)
|
|
ax4.legend(loc=4, fontsize=LegendFontsize)
|
|
|
|
save_path = vis_save_dir / "sss-{:}.png".format(dataset.lower())
|
|
fig.savefig(save_path, dpi=dpi, bbox_inches="tight", format="png")
|
|
print("{:} save into {:}".format(time_string(), save_path))
|
|
plt.close("all")
|
|
|
|
|
|
def visualize_tss_info(api, dataset, vis_save_dir):
|
|
vis_save_dir = vis_save_dir.resolve()
|
|
print("{:} start to visualize {:} information".format(time_string(), dataset))
|
|
vis_save_dir.mkdir(parents=True, exist_ok=True)
|
|
cache_file_path = vis_save_dir / "{:}-cache-tss-info.pth".format(dataset)
|
|
if not cache_file_path.exists():
|
|
print("Do not find cache file : {:}".format(cache_file_path))
|
|
params, flops, train_accs, valid_accs, test_accs = [], [], [], [], []
|
|
for index in range(len(api)):
|
|
cost_info = api.get_cost_info(index, dataset, hp="12")
|
|
params.append(cost_info["params"])
|
|
flops.append(cost_info["flops"])
|
|
# accuracy
|
|
info = api.get_more_info(index, dataset, hp="200", is_random=False)
|
|
train_accs.append(info["train-accuracy"])
|
|
test_accs.append(info["test-accuracy"])
|
|
if dataset == "cifar10":
|
|
info = api.get_more_info(
|
|
index, "cifar10-valid", hp="200", is_random=False
|
|
)
|
|
valid_accs.append(info["valid-accuracy"])
|
|
else:
|
|
valid_accs.append(info["valid-accuracy"])
|
|
print("")
|
|
info = {
|
|
"params": params,
|
|
"flops": flops,
|
|
"train_accs": train_accs,
|
|
"valid_accs": valid_accs,
|
|
"test_accs": test_accs,
|
|
}
|
|
torch.save(info, cache_file_path)
|
|
else:
|
|
print("Find cache file : {:}".format(cache_file_path))
|
|
info = torch.load(cache_file_path)
|
|
params, flops, train_accs, valid_accs, test_accs = (
|
|
info["params"],
|
|
info["flops"],
|
|
info["train_accs"],
|
|
info["valid_accs"],
|
|
info["test_accs"],
|
|
)
|
|
print("{:} collect data done.".format(time_string()))
|
|
|
|
resnet = [
|
|
"|nor_conv_3x3~0|+|none~0|nor_conv_3x3~1|+|skip_connect~0|none~1|skip_connect~2|"
|
|
]
|
|
resnet_indexes = [api.query_index_by_arch(x) for x in resnet]
|
|
largest_indexes = [
|
|
api.query_index_by_arch(
|
|
"|nor_conv_3x3~0|+|nor_conv_3x3~0|nor_conv_3x3~1|+|nor_conv_3x3~0|nor_conv_3x3~1|nor_conv_3x3~2|"
|
|
)
|
|
]
|
|
|
|
indexes = list(range(len(params)))
|
|
dpi, width, height = 250, 8500, 1300
|
|
figsize = width / float(dpi), height / float(dpi)
|
|
LabelSize, LegendFontsize = 24, 24
|
|
# resnet_scale, resnet_alpha = 120, 0.5
|
|
xscale, xalpha = 120, 0.8
|
|
|
|
fig, axs = plt.subplots(1, 4, figsize=figsize)
|
|
for ax in axs:
|
|
for tick in ax.xaxis.get_major_ticks():
|
|
tick.label.set_fontsize(LabelSize)
|
|
ax.yaxis.set_major_formatter(ticker.FormatStrFormatter("%.0f"))
|
|
for tick in ax.yaxis.get_major_ticks():
|
|
tick.label.set_fontsize(LabelSize)
|
|
ax1, ax2, ax3, ax4 = axs
|
|
|
|
ax1.scatter(params, train_accs, marker="o", s=0.5, c="tab:blue")
|
|
ax1.scatter(
|
|
[params[x] for x in resnet_indexes],
|
|
[train_accs[x] for x in resnet_indexes],
|
|
marker="*",
|
|
s=xscale,
|
|
c="tab:orange",
|
|
label="ResNet",
|
|
alpha=xalpha,
|
|
)
|
|
ax1.scatter(
|
|
[params[x] for x in largest_indexes],
|
|
[train_accs[x] for x in largest_indexes],
|
|
marker="x",
|
|
s=xscale,
|
|
c="tab:green",
|
|
label="Largest Candidate",
|
|
alpha=xalpha,
|
|
)
|
|
ax1.set_xlabel("#parameters (MB)", fontsize=LabelSize)
|
|
ax1.set_ylabel("train accuracy (%)", fontsize=LabelSize)
|
|
ax1.legend(loc=4, fontsize=LegendFontsize)
|
|
|
|
ax2.scatter(flops, train_accs, marker="o", s=0.5, c="tab:blue")
|
|
ax2.scatter(
|
|
[flops[x] for x in resnet_indexes],
|
|
[train_accs[x] for x in resnet_indexes],
|
|
marker="*",
|
|
s=xscale,
|
|
c="tab:orange",
|
|
label="ResNet",
|
|
alpha=xalpha,
|
|
)
|
|
ax2.scatter(
|
|
[flops[x] for x in largest_indexes],
|
|
[train_accs[x] for x in largest_indexes],
|
|
marker="x",
|
|
s=xscale,
|
|
c="tab:green",
|
|
label="Largest Candidate",
|
|
alpha=xalpha,
|
|
)
|
|
ax2.set_xlabel("#FLOPs (M)", fontsize=LabelSize)
|
|
# ax2.set_ylabel('train accuracy (%)', fontsize=LabelSize)
|
|
ax2.legend(loc=4, fontsize=LegendFontsize)
|
|
|
|
ax3.scatter(params, test_accs, marker="o", s=0.5, c="tab:blue")
|
|
ax3.scatter(
|
|
[params[x] for x in resnet_indexes],
|
|
[test_accs[x] for x in resnet_indexes],
|
|
marker="*",
|
|
s=xscale,
|
|
c="tab:orange",
|
|
label="ResNet",
|
|
alpha=xalpha,
|
|
)
|
|
ax3.scatter(
|
|
[params[x] for x in largest_indexes],
|
|
[test_accs[x] for x in largest_indexes],
|
|
marker="x",
|
|
s=xscale,
|
|
c="tab:green",
|
|
label="Largest Candidate",
|
|
alpha=xalpha,
|
|
)
|
|
ax3.set_xlabel("#parameters (MB)", fontsize=LabelSize)
|
|
ax3.set_ylabel("test accuracy (%)", fontsize=LabelSize)
|
|
ax3.legend(loc=4, fontsize=LegendFontsize)
|
|
|
|
ax4.scatter(flops, test_accs, marker="o", s=0.5, c="tab:blue")
|
|
ax4.scatter(
|
|
[flops[x] for x in resnet_indexes],
|
|
[test_accs[x] for x in resnet_indexes],
|
|
marker="*",
|
|
s=xscale,
|
|
c="tab:orange",
|
|
label="ResNet",
|
|
alpha=xalpha,
|
|
)
|
|
ax4.scatter(
|
|
[flops[x] for x in largest_indexes],
|
|
[test_accs[x] for x in largest_indexes],
|
|
marker="x",
|
|
s=xscale,
|
|
c="tab:green",
|
|
label="Largest Candidate",
|
|
alpha=xalpha,
|
|
)
|
|
ax4.set_xlabel("#FLOPs (M)", fontsize=LabelSize)
|
|
# ax4.set_ylabel('test accuracy (%)', fontsize=LabelSize)
|
|
ax4.legend(loc=4, fontsize=LegendFontsize)
|
|
|
|
save_path = vis_save_dir / "tss-{:}.png".format(dataset.lower())
|
|
fig.savefig(save_path, dpi=dpi, bbox_inches="tight", format="png")
|
|
print("{:} save into {:}".format(time_string(), save_path))
|
|
plt.close("all")
|
|
|
|
|
|
def visualize_rank_info(api, vis_save_dir, indicator):
|
|
vis_save_dir = vis_save_dir.resolve()
|
|
# print ('{:} start to visualize {:} information'.format(time_string(), api))
|
|
vis_save_dir.mkdir(parents=True, exist_ok=True)
|
|
|
|
cifar010_cache_path = vis_save_dir / "{:}-cache-{:}-info.pth".format(
|
|
"cifar10", indicator
|
|
)
|
|
cifar100_cache_path = vis_save_dir / "{:}-cache-{:}-info.pth".format(
|
|
"cifar100", indicator
|
|
)
|
|
imagenet_cache_path = vis_save_dir / "{:}-cache-{:}-info.pth".format(
|
|
"ImageNet16-120", indicator
|
|
)
|
|
cifar010_info = torch.load(cifar010_cache_path)
|
|
cifar100_info = torch.load(cifar100_cache_path)
|
|
imagenet_info = torch.load(imagenet_cache_path)
|
|
indexes = list(range(len(cifar010_info["params"])))
|
|
|
|
print("{:} start to visualize relative ranking".format(time_string()))
|
|
|
|
dpi, width, height = 250, 3800, 1200
|
|
figsize = width / float(dpi), height / float(dpi)
|
|
LabelSize, LegendFontsize = 14, 14
|
|
|
|
fig, axs = plt.subplots(1, 3, figsize=figsize)
|
|
ax1, ax2, ax3 = axs
|
|
|
|
def get_labels(info):
|
|
ord_test_indexes = sorted(indexes, key=lambda i: info["test_accs"][i])
|
|
ord_valid_indexes = sorted(indexes, key=lambda i: info["valid_accs"][i])
|
|
labels = []
|
|
for idx in ord_test_indexes:
|
|
labels.append(ord_valid_indexes.index(idx))
|
|
return labels
|
|
|
|
def plot_ax(labels, ax, name):
|
|
for tick in ax.xaxis.get_major_ticks():
|
|
tick.label.set_fontsize(LabelSize)
|
|
for tick in ax.yaxis.get_major_ticks():
|
|
tick.label.set_fontsize(LabelSize)
|
|
tick.label.set_rotation(90)
|
|
ax.set_xlim(min(indexes), max(indexes))
|
|
ax.set_ylim(min(indexes), max(indexes))
|
|
ax.yaxis.set_ticks(np.arange(min(indexes), max(indexes), max(indexes) // 3))
|
|
ax.xaxis.set_ticks(np.arange(min(indexes), max(indexes), max(indexes) // 5))
|
|
ax.scatter(indexes, labels, marker="^", s=0.5, c="tab:green", alpha=0.8)
|
|
ax.scatter(indexes, indexes, marker="o", s=0.5, c="tab:blue", alpha=0.8)
|
|
ax.scatter(
|
|
[-1], [-1], marker="^", s=100, c="tab:green", label="{:} test".format(name)
|
|
)
|
|
ax.scatter(
|
|
[-1],
|
|
[-1],
|
|
marker="o",
|
|
s=100,
|
|
c="tab:blue",
|
|
label="{:} validation".format(name),
|
|
)
|
|
ax.legend(loc=4, fontsize=LegendFontsize)
|
|
ax.set_xlabel("ranking on the {:} validation".format(name), fontsize=LabelSize)
|
|
ax.set_ylabel("architecture ranking", fontsize=LabelSize)
|
|
|
|
labels = get_labels(cifar010_info)
|
|
plot_ax(labels, ax1, "CIFAR-10")
|
|
labels = get_labels(cifar100_info)
|
|
plot_ax(labels, ax2, "CIFAR-100")
|
|
labels = get_labels(imagenet_info)
|
|
plot_ax(labels, ax3, "ImageNet-16-120")
|
|
|
|
save_path = (
|
|
vis_save_dir / "{:}-same-relative-rank.pdf".format(indicator)
|
|
).resolve()
|
|
fig.savefig(save_path, dpi=dpi, bbox_inches="tight", format="pdf")
|
|
save_path = (
|
|
vis_save_dir / "{:}-same-relative-rank.png".format(indicator)
|
|
).resolve()
|
|
fig.savefig(save_path, dpi=dpi, bbox_inches="tight", format="png")
|
|
print("{:} save into {:}".format(time_string(), save_path))
|
|
plt.close("all")
|
|
|
|
|
|
def compute_kendalltau(vectori, vectorj):
|
|
# indexes = list(range(len(vectori)))
|
|
# rank_1 = sorted(indexes, key=lambda i: vectori[i])
|
|
# rank_2 = sorted(indexes, key=lambda i: vectorj[i])
|
|
return scipy.stats.kendalltau(vectori, vectorj).correlation
|
|
|
|
|
|
def calculate_correlation(*vectors):
|
|
matrix = []
|
|
for i, vectori in enumerate(vectors):
|
|
x = []
|
|
for j, vectorj in enumerate(vectors):
|
|
# x.append(np.corrcoef(vectori, vectorj)[0,1])
|
|
x.append(compute_kendalltau(vectori, vectorj))
|
|
matrix.append(x)
|
|
return np.array(matrix)
|
|
|
|
|
|
def visualize_all_rank_info(api, vis_save_dir, indicator):
|
|
vis_save_dir = vis_save_dir.resolve()
|
|
# print ('{:} start to visualize {:} information'.format(time_string(), api))
|
|
vis_save_dir.mkdir(parents=True, exist_ok=True)
|
|
|
|
cifar010_cache_path = vis_save_dir / "{:}-cache-{:}-info.pth".format(
|
|
"cifar10", indicator
|
|
)
|
|
cifar100_cache_path = vis_save_dir / "{:}-cache-{:}-info.pth".format(
|
|
"cifar100", indicator
|
|
)
|
|
imagenet_cache_path = vis_save_dir / "{:}-cache-{:}-info.pth".format(
|
|
"ImageNet16-120", indicator
|
|
)
|
|
cifar010_info = torch.load(cifar010_cache_path)
|
|
cifar100_info = torch.load(cifar100_cache_path)
|
|
imagenet_info = torch.load(imagenet_cache_path)
|
|
indexes = list(range(len(cifar010_info["params"])))
|
|
|
|
print("{:} start to visualize relative ranking".format(time_string()))
|
|
|
|
dpi, width, height = 250, 3200, 1400
|
|
figsize = width / float(dpi), height / float(dpi)
|
|
LabelSize, LegendFontsize = 14, 14
|
|
|
|
fig, axs = plt.subplots(1, 2, figsize=figsize)
|
|
ax1, ax2 = axs
|
|
|
|
sns_size, xformat = 15, ".2f"
|
|
CoRelMatrix = calculate_correlation(
|
|
cifar010_info["valid_accs"],
|
|
cifar010_info["test_accs"],
|
|
cifar100_info["valid_accs"],
|
|
cifar100_info["test_accs"],
|
|
imagenet_info["valid_accs"],
|
|
imagenet_info["test_accs"],
|
|
)
|
|
|
|
sns.heatmap(
|
|
CoRelMatrix,
|
|
annot=True,
|
|
annot_kws={"size": sns_size},
|
|
fmt=xformat,
|
|
linewidths=0.5,
|
|
ax=ax1,
|
|
xticklabels=["C10-V", "C10-T", "C100-V", "C100-T", "I120-V", "I120-T"],
|
|
yticklabels=["C10-V", "C10-T", "C100-V", "C100-T", "I120-V", "I120-T"],
|
|
)
|
|
|
|
selected_indexes, acc_bar = [], 92
|
|
for i, acc in enumerate(cifar010_info["test_accs"]):
|
|
if acc > acc_bar:
|
|
selected_indexes.append(i)
|
|
cifar010_valid_accs = np.array(cifar010_info["valid_accs"])[selected_indexes]
|
|
cifar010_test_accs = np.array(cifar010_info["test_accs"])[selected_indexes]
|
|
cifar100_valid_accs = np.array(cifar100_info["valid_accs"])[selected_indexes]
|
|
cifar100_test_accs = np.array(cifar100_info["test_accs"])[selected_indexes]
|
|
imagenet_valid_accs = np.array(imagenet_info["valid_accs"])[selected_indexes]
|
|
imagenet_test_accs = np.array(imagenet_info["test_accs"])[selected_indexes]
|
|
CoRelMatrix = calculate_correlation(
|
|
cifar010_valid_accs,
|
|
cifar010_test_accs,
|
|
cifar100_valid_accs,
|
|
cifar100_test_accs,
|
|
imagenet_valid_accs,
|
|
imagenet_test_accs,
|
|
)
|
|
|
|
sns.heatmap(
|
|
CoRelMatrix,
|
|
annot=True,
|
|
annot_kws={"size": sns_size},
|
|
fmt=xformat,
|
|
linewidths=0.5,
|
|
ax=ax2,
|
|
xticklabels=["C10-V", "C10-T", "C100-V", "C100-T", "I120-V", "I120-T"],
|
|
yticklabels=["C10-V", "C10-T", "C100-V", "C100-T", "I120-V", "I120-T"],
|
|
)
|
|
ax1.set_title("Correlation coefficient over ALL candidates")
|
|
ax2.set_title(
|
|
"Correlation coefficient over candidates with accuracy > {:}%".format(acc_bar)
|
|
)
|
|
save_path = (vis_save_dir / "{:}-all-relative-rank.png".format(indicator)).resolve()
|
|
fig.savefig(save_path, dpi=dpi, bbox_inches="tight", format="png")
|
|
print("{:} save into {:}".format(time_string(), save_path))
|
|
plt.close("all")
|
|
|
|
|
|
if __name__ == "__main__":
|
|
parser = argparse.ArgumentParser(
|
|
description="NATS-Bench", formatter_class=argparse.ArgumentDefaultsHelpFormatter
|
|
)
|
|
parser.add_argument(
|
|
"--save_dir",
|
|
type=str,
|
|
default="output/vis-nas-bench",
|
|
help="Folder to save checkpoints and log.",
|
|
)
|
|
# use for train the model
|
|
args = parser.parse_args()
|
|
|
|
to_save_dir = Path(args.save_dir)
|
|
|
|
datasets = ["cifar10", "cifar100", "ImageNet16-120"]
|
|
# Figure 3 (a-c)
|
|
api_tss = create(None, "tss", verbose=True)
|
|
for xdata in datasets:
|
|
visualize_tss_info(api_tss, xdata, to_save_dir)
|
|
# Figure 3 (d-f)
|
|
api_sss = create(None, "size", verbose=True)
|
|
for xdata in datasets:
|
|
visualize_sss_info(api_sss, xdata, to_save_dir)
|
|
|
|
# Figure 2
|
|
visualize_relative_info(None, to_save_dir, "tss")
|
|
visualize_relative_info(None, to_save_dir, "sss")
|
|
|
|
# Figure 4
|
|
visualize_rank_info(None, to_save_dir, "tss")
|
|
visualize_rank_info(None, to_save_dir, "sss")
|
|
|
|
# Figure 5
|
|
visualize_all_rank_info(None, to_save_dir, "tss")
|
|
visualize_all_rank_info(None, to_save_dir, "sss")
|