390 lines
16 KiB
Python
390 lines
16 KiB
Python
##############################################################################
|
|
# NATS-Bench: Benchmarking NAS Algorithms for Architecture Topology and Size #
|
|
##############################################################################
|
|
# Copyright (c) Xuanyi Dong [GitHub D-X-Y], 2020.08 #
|
|
##############################################################################
|
|
# This file is used to re-orangize all checkpoints (created by main-sss.py) #
|
|
# into a single benchmark file. Besides, for each trial, we will merge the #
|
|
# information of all its trials into a single file. #
|
|
# #
|
|
# Usage: #
|
|
# python exps/NATS-Bench/sss-collect.py #
|
|
##############################################################################
|
|
import os, re, sys, time, shutil, argparse, collections
|
|
import torch
|
|
from tqdm import tqdm
|
|
from pathlib import Path
|
|
from collections import defaultdict, OrderedDict
|
|
from typing import Dict, Any, Text, List
|
|
|
|
from xautodl.log_utils import AverageMeter, time_string, convert_secs2time
|
|
from xautodl.config_utils import dict2config
|
|
from xautodl.models import CellStructure, get_cell_based_tiny_net
|
|
from xautodl.procedures import (
|
|
bench_pure_evaluate as pure_evaluate,
|
|
get_nas_bench_loaders,
|
|
)
|
|
from xautodl.utils import get_md5_file
|
|
|
|
from nats_bench import pickle_save, pickle_load, ArchResults, ResultsCount
|
|
|
|
|
|
NATS_SSS_BASE_NAME = "NATS-sss-v1_0" # 2020.08.28
|
|
|
|
|
|
def account_one_arch(
|
|
arch_index: int, arch_str: Text, checkpoints: List[Text], datasets: List[Text]
|
|
) -> ArchResults:
|
|
information = ArchResults(arch_index, arch_str)
|
|
|
|
for checkpoint_path in checkpoints:
|
|
try:
|
|
checkpoint = torch.load(checkpoint_path, map_location="cpu")
|
|
except:
|
|
raise ValueError(
|
|
"This checkpoint failed to be loaded : {:}".format(checkpoint_path)
|
|
)
|
|
used_seed = checkpoint_path.name.split("-")[-1].split(".")[0]
|
|
ok_dataset = 0
|
|
for dataset in datasets:
|
|
if dataset not in checkpoint:
|
|
print(
|
|
"Can not find {:} in arch-{:} from {:}".format(
|
|
dataset, arch_index, checkpoint_path
|
|
)
|
|
)
|
|
continue
|
|
else:
|
|
ok_dataset += 1
|
|
results = checkpoint[dataset]
|
|
assert results[
|
|
"finish-train"
|
|
], "This {:} arch seed={:} does not finish train on {:} ::: {:}".format(
|
|
arch_index, used_seed, dataset, checkpoint_path
|
|
)
|
|
arch_config = {
|
|
"name": "infer.shape.tiny",
|
|
"channels": arch_str,
|
|
"arch_str": arch_str,
|
|
"genotype": results["arch_config"]["genotype"],
|
|
"class_num": results["arch_config"]["num_classes"],
|
|
}
|
|
xresult = ResultsCount(
|
|
dataset,
|
|
results["net_state_dict"],
|
|
results["train_acc1es"],
|
|
results["train_losses"],
|
|
results["param"],
|
|
results["flop"],
|
|
arch_config,
|
|
used_seed,
|
|
results["total_epoch"],
|
|
None,
|
|
)
|
|
xresult.update_train_info(
|
|
results["train_acc1es"],
|
|
results["train_acc5es"],
|
|
results["train_losses"],
|
|
results["train_times"],
|
|
)
|
|
xresult.update_eval(
|
|
results["valid_acc1es"], results["valid_losses"], results["valid_times"]
|
|
)
|
|
information.update(dataset, int(used_seed), xresult)
|
|
if ok_dataset < len(datasets):
|
|
raise ValueError(
|
|
"{:} does find enought data : {:} vs {:}".format(
|
|
checkpoint_path, ok_dataset, len(datasets)
|
|
)
|
|
)
|
|
return information
|
|
|
|
|
|
def correct_time_related_info(hp2info: Dict[Text, ArchResults]):
|
|
# calibrate the latency based on the number of epochs = 01, since they are trained on the same machine.
|
|
x1 = hp2info["01"].get_metrics("cifar10-valid", "x-valid")["all_time"] / 98
|
|
x2 = hp2info["01"].get_metrics("cifar10-valid", "ori-test")["all_time"] / 40
|
|
cifar010_latency = (x1 + x2) / 2
|
|
for hp, arch_info in hp2info.items():
|
|
arch_info.reset_latency("cifar10-valid", None, cifar010_latency)
|
|
arch_info.reset_latency("cifar10", None, cifar010_latency)
|
|
# hp2info['01'].get_latency('cifar10')
|
|
|
|
x1 = hp2info["01"].get_metrics("cifar100", "ori-test")["all_time"] / 40
|
|
x2 = hp2info["01"].get_metrics("cifar100", "x-test")["all_time"] / 20
|
|
x3 = hp2info["01"].get_metrics("cifar100", "x-valid")["all_time"] / 20
|
|
cifar100_latency = (x1 + x2 + x3) / 3
|
|
for hp, arch_info in hp2info.items():
|
|
arch_info.reset_latency("cifar100", None, cifar100_latency)
|
|
|
|
x1 = hp2info["01"].get_metrics("ImageNet16-120", "ori-test")["all_time"] / 24
|
|
x2 = hp2info["01"].get_metrics("ImageNet16-120", "x-test")["all_time"] / 12
|
|
x3 = hp2info["01"].get_metrics("ImageNet16-120", "x-valid")["all_time"] / 12
|
|
image_latency = (x1 + x2 + x3) / 3
|
|
for hp, arch_info in hp2info.items():
|
|
arch_info.reset_latency("ImageNet16-120", None, image_latency)
|
|
|
|
# CIFAR10 VALID
|
|
train_per_epoch_time = list(
|
|
hp2info["01"].query("cifar10-valid", 777).train_times.values()
|
|
)
|
|
train_per_epoch_time = sum(train_per_epoch_time) / len(train_per_epoch_time)
|
|
eval_ori_test_time, eval_x_valid_time = [], []
|
|
for key, value in hp2info["01"].query("cifar10-valid", 777).eval_times.items():
|
|
if key.startswith("ori-test@"):
|
|
eval_ori_test_time.append(value)
|
|
elif key.startswith("x-valid@"):
|
|
eval_x_valid_time.append(value)
|
|
else:
|
|
raise ValueError("-- {:} --".format(key))
|
|
eval_ori_test_time = sum(eval_ori_test_time) / len(eval_ori_test_time)
|
|
eval_x_valid_time = sum(eval_x_valid_time) / len(eval_x_valid_time)
|
|
for hp, arch_info in hp2info.items():
|
|
arch_info.reset_pseudo_train_times("cifar10-valid", None, train_per_epoch_time)
|
|
arch_info.reset_pseudo_eval_times(
|
|
"cifar10-valid", None, "x-valid", eval_x_valid_time
|
|
)
|
|
arch_info.reset_pseudo_eval_times(
|
|
"cifar10-valid", None, "ori-test", eval_ori_test_time
|
|
)
|
|
|
|
# CIFAR10
|
|
train_per_epoch_time = list(
|
|
hp2info["01"].query("cifar10", 777).train_times.values()
|
|
)
|
|
train_per_epoch_time = sum(train_per_epoch_time) / len(train_per_epoch_time)
|
|
eval_ori_test_time = []
|
|
for key, value in hp2info["01"].query("cifar10", 777).eval_times.items():
|
|
if key.startswith("ori-test@"):
|
|
eval_ori_test_time.append(value)
|
|
else:
|
|
raise ValueError("-- {:} --".format(key))
|
|
eval_ori_test_time = sum(eval_ori_test_time) / len(eval_ori_test_time)
|
|
for hp, arch_info in hp2info.items():
|
|
arch_info.reset_pseudo_train_times("cifar10", None, train_per_epoch_time)
|
|
arch_info.reset_pseudo_eval_times(
|
|
"cifar10", None, "ori-test", eval_ori_test_time
|
|
)
|
|
|
|
# CIFAR100
|
|
train_per_epoch_time = list(
|
|
hp2info["01"].query("cifar100", 777).train_times.values()
|
|
)
|
|
train_per_epoch_time = sum(train_per_epoch_time) / len(train_per_epoch_time)
|
|
eval_ori_test_time, eval_x_valid_time, eval_x_test_time = [], [], []
|
|
for key, value in hp2info["01"].query("cifar100", 777).eval_times.items():
|
|
if key.startswith("ori-test@"):
|
|
eval_ori_test_time.append(value)
|
|
elif key.startswith("x-valid@"):
|
|
eval_x_valid_time.append(value)
|
|
elif key.startswith("x-test@"):
|
|
eval_x_test_time.append(value)
|
|
else:
|
|
raise ValueError("-- {:} --".format(key))
|
|
eval_ori_test_time = sum(eval_ori_test_time) / len(eval_ori_test_time)
|
|
eval_x_valid_time = sum(eval_x_valid_time) / len(eval_x_valid_time)
|
|
eval_x_test_time = sum(eval_x_test_time) / len(eval_x_test_time)
|
|
for hp, arch_info in hp2info.items():
|
|
arch_info.reset_pseudo_train_times("cifar100", None, train_per_epoch_time)
|
|
arch_info.reset_pseudo_eval_times(
|
|
"cifar100", None, "x-valid", eval_x_valid_time
|
|
)
|
|
arch_info.reset_pseudo_eval_times("cifar100", None, "x-test", eval_x_test_time)
|
|
arch_info.reset_pseudo_eval_times(
|
|
"cifar100", None, "ori-test", eval_ori_test_time
|
|
)
|
|
|
|
# ImageNet16-120
|
|
train_per_epoch_time = list(
|
|
hp2info["01"].query("ImageNet16-120", 777).train_times.values()
|
|
)
|
|
train_per_epoch_time = sum(train_per_epoch_time) / len(train_per_epoch_time)
|
|
eval_ori_test_time, eval_x_valid_time, eval_x_test_time = [], [], []
|
|
for key, value in hp2info["01"].query("ImageNet16-120", 777).eval_times.items():
|
|
if key.startswith("ori-test@"):
|
|
eval_ori_test_time.append(value)
|
|
elif key.startswith("x-valid@"):
|
|
eval_x_valid_time.append(value)
|
|
elif key.startswith("x-test@"):
|
|
eval_x_test_time.append(value)
|
|
else:
|
|
raise ValueError("-- {:} --".format(key))
|
|
eval_ori_test_time = sum(eval_ori_test_time) / len(eval_ori_test_time)
|
|
eval_x_valid_time = sum(eval_x_valid_time) / len(eval_x_valid_time)
|
|
eval_x_test_time = sum(eval_x_test_time) / len(eval_x_test_time)
|
|
for hp, arch_info in hp2info.items():
|
|
arch_info.reset_pseudo_train_times("ImageNet16-120", None, train_per_epoch_time)
|
|
arch_info.reset_pseudo_eval_times(
|
|
"ImageNet16-120", None, "x-valid", eval_x_valid_time
|
|
)
|
|
arch_info.reset_pseudo_eval_times(
|
|
"ImageNet16-120", None, "x-test", eval_x_test_time
|
|
)
|
|
arch_info.reset_pseudo_eval_times(
|
|
"ImageNet16-120", None, "ori-test", eval_ori_test_time
|
|
)
|
|
return hp2info
|
|
|
|
|
|
def simplify(save_dir, save_name, nets, total):
|
|
|
|
hps, seeds = ["01", "12", "90"], set()
|
|
for hp in hps:
|
|
sub_save_dir = save_dir / "raw-data-{:}".format(hp)
|
|
ckps = sorted(list(sub_save_dir.glob("arch-*-seed-*.pth")))
|
|
seed2names = defaultdict(list)
|
|
for ckp in ckps:
|
|
parts = re.split("-|\.", ckp.name)
|
|
seed2names[parts[3]].append(ckp.name)
|
|
print("DIR : {:}".format(sub_save_dir))
|
|
nums = []
|
|
for seed, xlist in seed2names.items():
|
|
seeds.add(seed)
|
|
nums.append(len(xlist))
|
|
print(" [seed={:}] there are {:} checkpoints.".format(seed, len(xlist)))
|
|
assert (
|
|
len(nets) == total == max(nums)
|
|
), "there are some missed files : {:} vs {:}".format(max(nums), total)
|
|
print("{:} start simplify the checkpoint.".format(time_string()))
|
|
|
|
datasets = ("cifar10-valid", "cifar10", "cifar100", "ImageNet16-120")
|
|
|
|
# Create the directory to save the processed data
|
|
# full_save_dir contains all benchmark files with trained weights.
|
|
# simplify_save_dir contains all benchmark files without trained weights.
|
|
full_save_dir = save_dir / (save_name + "-FULL")
|
|
simple_save_dir = save_dir / (save_name + "-SIMPLIFY")
|
|
full_save_dir.mkdir(parents=True, exist_ok=True)
|
|
simple_save_dir.mkdir(parents=True, exist_ok=True)
|
|
# all data in memory
|
|
arch2infos, evaluated_indexes = dict(), set()
|
|
end_time, arch_time = time.time(), AverageMeter()
|
|
|
|
for index in tqdm(range(total)):
|
|
arch_str = nets[index]
|
|
hp2info = OrderedDict()
|
|
|
|
full_save_path = full_save_dir / "{:06d}.pickle".format(index)
|
|
simple_save_path = simple_save_dir / "{:06d}.pickle".format(index)
|
|
|
|
for hp in hps:
|
|
sub_save_dir = save_dir / "raw-data-{:}".format(hp)
|
|
ckps = [
|
|
sub_save_dir / "arch-{:06d}-seed-{:}.pth".format(index, seed)
|
|
for seed in seeds
|
|
]
|
|
ckps = [x for x in ckps if x.exists()]
|
|
if len(ckps) == 0:
|
|
raise ValueError("Invalid data : index={:}, hp={:}".format(index, hp))
|
|
|
|
arch_info = account_one_arch(index, arch_str, ckps, datasets)
|
|
hp2info[hp] = arch_info
|
|
|
|
hp2info = correct_time_related_info(hp2info)
|
|
evaluated_indexes.add(index)
|
|
|
|
hp2info["01"].clear_params() # to save some spaces...
|
|
to_save_data = OrderedDict(
|
|
{
|
|
"01": hp2info["01"].state_dict(),
|
|
"12": hp2info["12"].state_dict(),
|
|
"90": hp2info["90"].state_dict(),
|
|
}
|
|
)
|
|
pickle_save(to_save_data, str(full_save_path))
|
|
|
|
for hp in hps:
|
|
hp2info[hp].clear_params()
|
|
to_save_data = OrderedDict(
|
|
{
|
|
"01": hp2info["01"].state_dict(),
|
|
"12": hp2info["12"].state_dict(),
|
|
"90": hp2info["90"].state_dict(),
|
|
}
|
|
)
|
|
pickle_save(to_save_data, str(simple_save_path))
|
|
arch2infos[index] = to_save_data
|
|
# measure elapsed time
|
|
arch_time.update(time.time() - end_time)
|
|
end_time = time.time()
|
|
need_time = "{:}".format(
|
|
convert_secs2time(arch_time.avg * (total - index - 1), True)
|
|
)
|
|
# print('{:} {:06d}/{:06d} : still need {:}'.format(time_string(), index, total, need_time))
|
|
print("{:} {:} done.".format(time_string(), save_name))
|
|
final_infos = {
|
|
"meta_archs": nets,
|
|
"total_archs": total,
|
|
"arch2infos": arch2infos,
|
|
"evaluated_indexes": evaluated_indexes,
|
|
}
|
|
save_file_name = save_dir / "{:}.pickle".format(save_name)
|
|
pickle_save(final_infos, str(save_file_name))
|
|
# move the benchmark file to a new path
|
|
hd5sum = get_md5_file(str(save_file_name) + ".pbz2")
|
|
hd5_file_name = save_dir / "{:}-{:}.pickle.pbz2".format(NATS_SSS_BASE_NAME, hd5sum)
|
|
shutil.move(str(save_file_name) + ".pbz2", hd5_file_name)
|
|
print(
|
|
"Save {:} / {:} architecture results into {:} -> {:}.".format(
|
|
len(evaluated_indexes), total, save_file_name, hd5_file_name
|
|
)
|
|
)
|
|
# move the directory to a new path
|
|
hd5_full_save_dir = save_dir / "{:}-{:}-full".format(NATS_SSS_BASE_NAME, hd5sum)
|
|
hd5_simple_save_dir = save_dir / "{:}-{:}-simple".format(NATS_SSS_BASE_NAME, hd5sum)
|
|
shutil.move(full_save_dir, hd5_full_save_dir)
|
|
shutil.move(simple_save_dir, hd5_simple_save_dir)
|
|
# save the meta information for simple and full
|
|
final_infos["arch2infos"] = None
|
|
final_infos["evaluated_indexes"] = set()
|
|
pickle_save(final_infos, str(hd5_full_save_dir / "meta.pickle"))
|
|
pickle_save(final_infos, str(hd5_simple_save_dir / "meta.pickle"))
|
|
|
|
|
|
def traverse_net(candidates: List[int], N: int):
|
|
nets = [""]
|
|
for i in range(N):
|
|
new_nets = []
|
|
for net in nets:
|
|
for C in candidates:
|
|
new_nets.append(str(C) if net == "" else "{:}:{:}".format(net, C))
|
|
nets = new_nets
|
|
return nets
|
|
|
|
|
|
if __name__ == "__main__":
|
|
parser = argparse.ArgumentParser(
|
|
description="NATS-Bench (size search space)",
|
|
formatter_class=argparse.ArgumentDefaultsHelpFormatter,
|
|
)
|
|
parser.add_argument(
|
|
"--base_save_dir",
|
|
type=str,
|
|
default="./output/NATS-Bench-size",
|
|
help="The base-name of folder to save checkpoints and log.",
|
|
)
|
|
parser.add_argument(
|
|
"--candidateC",
|
|
type=int,
|
|
nargs="+",
|
|
default=[8, 16, 24, 32, 40, 48, 56, 64],
|
|
help=".",
|
|
)
|
|
parser.add_argument(
|
|
"--num_layers", type=int, default=5, help="The number of layers in a network."
|
|
)
|
|
parser.add_argument("--check_N", type=int, default=32768, help="For safety.")
|
|
parser.add_argument(
|
|
"--save_name", type=str, default="process", help="The save directory."
|
|
)
|
|
args = parser.parse_args()
|
|
|
|
nets = traverse_net(args.candidateC, args.num_layers)
|
|
if len(nets) != args.check_N:
|
|
raise ValueError(
|
|
"Pre-num-check failed : {:} vs {:}".format(len(nets), args.check_N)
|
|
)
|
|
|
|
save_dir = Path(args.base_save_dir)
|
|
simplify(save_dir, args.save_name, nets, args.check_N)
|