180 lines
7.3 KiB
Python
180 lines
7.3 KiB
Python
##############################################################################
|
|
# NATS-Bench: Benchmarking NAS Algorithms for Architecture Topology and Size #
|
|
##############################################################################
|
|
# Copyright (c) Xuanyi Dong [GitHub D-X-Y], 2020.08 #
|
|
##############################################################################
|
|
# This file is used to re-orangize all checkpoints (created by main-tss.py) #
|
|
# into a single benchmark file. Besides, for each trial, we will merge the #
|
|
# information of all its trials into a single file. #
|
|
# #
|
|
# Usage: #
|
|
# python exps/NATS-Bench/tss-collect-patcher.py #
|
|
##############################################################################
|
|
import os, re, sys, time, shutil, random, argparse, collections
|
|
import numpy as np
|
|
from copy import deepcopy
|
|
import torch
|
|
from tqdm import tqdm
|
|
from pathlib import Path
|
|
from collections import defaultdict, OrderedDict
|
|
from typing import Dict, Any, Text, List
|
|
|
|
from xautodl.log_utils import AverageMeter, time_string, convert_secs2time
|
|
from xautodl.config_utils import load_config, dict2config
|
|
from xautodl.datasets import get_datasets
|
|
from xautodl.models import CellStructure, get_cell_based_tiny_net, get_search_spaces
|
|
from xautodl.procedures import (
|
|
bench_pure_evaluate as pure_evaluate,
|
|
get_nas_bench_loaders,
|
|
)
|
|
from xautodl.utils import get_md5_file
|
|
|
|
from nats_bench import pickle_save, pickle_load, ArchResults, ResultsCount
|
|
from nas_201_api import NASBench201API
|
|
|
|
|
|
NATS_TSS_BASE_NAME = "NATS-tss-v1_0" # 2020.08.28
|
|
|
|
|
|
def simplify(save_dir, save_name, nets, total, sup_config):
|
|
hps, seeds = ["12", "200"], set()
|
|
for hp in hps:
|
|
sub_save_dir = save_dir / "raw-data-{:}".format(hp)
|
|
ckps = sorted(list(sub_save_dir.glob("arch-*-seed-*.pth")))
|
|
seed2names = defaultdict(list)
|
|
for ckp in ckps:
|
|
parts = re.split("-|\.", ckp.name)
|
|
seed2names[parts[3]].append(ckp.name)
|
|
print("DIR : {:}".format(sub_save_dir))
|
|
nums = []
|
|
for seed, xlist in seed2names.items():
|
|
seeds.add(seed)
|
|
nums.append(len(xlist))
|
|
print(" [seed={:}] there are {:} checkpoints.".format(seed, len(xlist)))
|
|
assert (
|
|
len(nets) == total == max(nums)
|
|
), "there are some missed files : {:} vs {:}".format(max(nums), total)
|
|
print("{:} start simplify the checkpoint.".format(time_string()))
|
|
|
|
datasets = ("cifar10-valid", "cifar10", "cifar100", "ImageNet16-120")
|
|
|
|
# Create the directory to save the processed data
|
|
# full_save_dir contains all benchmark files with trained weights.
|
|
# simplify_save_dir contains all benchmark files without trained weights.
|
|
full_save_dir = save_dir / (save_name + "-FULL")
|
|
simple_save_dir = save_dir / (save_name + "-SIMPLIFY")
|
|
full_save_dir.mkdir(parents=True, exist_ok=True)
|
|
simple_save_dir.mkdir(parents=True, exist_ok=True)
|
|
# all data in memory
|
|
arch2infos, evaluated_indexes = dict(), set()
|
|
end_time, arch_time = time.time(), AverageMeter()
|
|
# save the meta information
|
|
for index in tqdm(range(total)):
|
|
arch_str = nets[index]
|
|
hp2info = OrderedDict()
|
|
|
|
simple_save_path = simple_save_dir / "{:06d}.pickle".format(index)
|
|
|
|
arch2infos[index] = pickle_load(simple_save_path)
|
|
evaluated_indexes.add(index)
|
|
|
|
# measure elapsed time
|
|
arch_time.update(time.time() - end_time)
|
|
end_time = time.time()
|
|
need_time = "{:}".format(
|
|
convert_secs2time(arch_time.avg * (total - index - 1), True)
|
|
)
|
|
# print('{:} {:06d}/{:06d} : still need {:}'.format(time_string(), index, total, need_time))
|
|
print("{:} {:} done.".format(time_string(), save_name))
|
|
final_infos = {
|
|
"meta_archs": nets,
|
|
"total_archs": total,
|
|
"arch2infos": arch2infos,
|
|
"evaluated_indexes": evaluated_indexes,
|
|
}
|
|
save_file_name = save_dir / "{:}.pickle".format(save_name)
|
|
pickle_save(final_infos, str(save_file_name))
|
|
# move the benchmark file to a new path
|
|
hd5sum = get_md5_file(str(save_file_name) + ".pbz2")
|
|
hd5_file_name = save_dir / "{:}-{:}.pickle.pbz2".format(NATS_TSS_BASE_NAME, hd5sum)
|
|
shutil.move(str(save_file_name) + ".pbz2", hd5_file_name)
|
|
print(
|
|
"Save {:} / {:} architecture results into {:} -> {:}.".format(
|
|
len(evaluated_indexes), total, save_file_name, hd5_file_name
|
|
)
|
|
)
|
|
# move the directory to a new path
|
|
hd5_full_save_dir = save_dir / "{:}-{:}-full".format(NATS_TSS_BASE_NAME, hd5sum)
|
|
hd5_simple_save_dir = save_dir / "{:}-{:}-simple".format(NATS_TSS_BASE_NAME, hd5sum)
|
|
shutil.move(full_save_dir, hd5_full_save_dir)
|
|
shutil.move(simple_save_dir, hd5_simple_save_dir)
|
|
|
|
|
|
def traverse_net(max_node):
|
|
aa_nas_bench_ss = get_search_spaces("cell", "nats-bench")
|
|
archs = CellStructure.gen_all(aa_nas_bench_ss, max_node, False)
|
|
print(
|
|
"There are {:} archs vs {:}.".format(
|
|
len(archs), len(aa_nas_bench_ss) ** ((max_node - 1) * max_node / 2)
|
|
)
|
|
)
|
|
|
|
random.seed(88) # please do not change this line for reproducibility
|
|
random.shuffle(archs)
|
|
assert (
|
|
archs[0].tostr()
|
|
== "|avg_pool_3x3~0|+|nor_conv_1x1~0|skip_connect~1|+|nor_conv_1x1~0|skip_connect~1|skip_connect~2|"
|
|
), "please check the 0-th architecture : {:}".format(archs[0])
|
|
assert (
|
|
archs[9].tostr()
|
|
== "|avg_pool_3x3~0|+|none~0|none~1|+|skip_connect~0|none~1|nor_conv_3x3~2|"
|
|
), "please check the 9-th architecture : {:}".format(archs[9])
|
|
assert (
|
|
archs[123].tostr()
|
|
== "|avg_pool_3x3~0|+|avg_pool_3x3~0|nor_conv_1x1~1|+|none~0|avg_pool_3x3~1|nor_conv_3x3~2|"
|
|
), "please check the 123-th architecture : {:}".format(archs[123])
|
|
return [x.tostr() for x in archs]
|
|
|
|
|
|
if __name__ == "__main__":
|
|
|
|
parser = argparse.ArgumentParser(
|
|
description="NATS-Bench (topology search space)",
|
|
formatter_class=argparse.ArgumentDefaultsHelpFormatter,
|
|
)
|
|
parser.add_argument(
|
|
"--base_save_dir",
|
|
type=str,
|
|
default="./output/NATS-Bench-topology",
|
|
help="The base-name of folder to save checkpoints and log.",
|
|
)
|
|
parser.add_argument(
|
|
"--max_node", type=int, default=4, help="The maximum node in a cell."
|
|
)
|
|
parser.add_argument(
|
|
"--channel", type=int, default=16, help="The number of channels."
|
|
)
|
|
parser.add_argument(
|
|
"--num_cells", type=int, default=5, help="The number of cells in one stage."
|
|
)
|
|
parser.add_argument("--check_N", type=int, default=15625, help="For safety.")
|
|
parser.add_argument(
|
|
"--save_name", type=str, default="process", help="The save directory."
|
|
)
|
|
args = parser.parse_args()
|
|
|
|
nets = traverse_net(args.max_node)
|
|
if len(nets) != args.check_N:
|
|
raise ValueError(
|
|
"Pre-num-check failed : {:} vs {:}".format(len(nets), args.check_N)
|
|
)
|
|
|
|
save_dir = Path(args.base_save_dir)
|
|
simplify(
|
|
save_dir,
|
|
args.save_name,
|
|
nets,
|
|
args.check_N,
|
|
{"name": "infer.tiny", "channel": args.channel, "num_cells": args.num_cells},
|
|
)
|