462 lines
18 KiB
Python
462 lines
18 KiB
Python
##############################################################################
|
|
# NATS-Bench: Benchmarking NAS Algorithms for Architecture Topology and Size #
|
|
##############################################################################
|
|
# Copyright (c) Xuanyi Dong [GitHub D-X-Y], 2020.08 #
|
|
##############################################################################
|
|
# This file is used to re-orangize all checkpoints (created by main-tss.py) #
|
|
# into a single benchmark file. Besides, for each trial, we will merge the #
|
|
# information of all its trials into a single file. #
|
|
# #
|
|
# Usage: #
|
|
# python exps/NATS-Bench/tss-collect.py #
|
|
##############################################################################
|
|
import os, re, sys, time, shutil, random, argparse, collections
|
|
import numpy as np
|
|
from copy import deepcopy
|
|
import torch
|
|
from tqdm import tqdm
|
|
from pathlib import Path
|
|
from collections import defaultdict, OrderedDict
|
|
from typing import Dict, Any, Text, List
|
|
|
|
from xautodl.log_utils import AverageMeter, time_string, convert_secs2time
|
|
from xautodl.config_utils import load_config, dict2config
|
|
from xautodl.datasets import get_datasets
|
|
from xautodl.models import CellStructure, get_cell_based_tiny_net, get_search_spaces
|
|
from xautodl.procedures import (
|
|
bench_pure_evaluate as pure_evaluate,
|
|
get_nas_bench_loaders,
|
|
)
|
|
from xautodl.utils import get_md5_file
|
|
from nats_bench import pickle_save, pickle_load, ArchResults, ResultsCount
|
|
from nas_201_api import NASBench201API
|
|
|
|
|
|
api = NASBench201API(
|
|
"{:}/.torch/NAS-Bench-201-v1_0-e61699.pth".format(os.environ["HOME"])
|
|
)
|
|
|
|
NATS_TSS_BASE_NAME = "NATS-tss-v1_0" # 2020.08.28
|
|
|
|
|
|
def create_result_count(
|
|
used_seed: int,
|
|
dataset: Text,
|
|
arch_config: Dict[Text, Any],
|
|
results: Dict[Text, Any],
|
|
dataloader_dict: Dict[Text, Any],
|
|
) -> ResultsCount:
|
|
xresult = ResultsCount(
|
|
dataset,
|
|
results["net_state_dict"],
|
|
results["train_acc1es"],
|
|
results["train_losses"],
|
|
results["param"],
|
|
results["flop"],
|
|
arch_config,
|
|
used_seed,
|
|
results["total_epoch"],
|
|
None,
|
|
)
|
|
net_config = dict2config(
|
|
{
|
|
"name": "infer.tiny",
|
|
"C": arch_config["channel"],
|
|
"N": arch_config["num_cells"],
|
|
"genotype": CellStructure.str2structure(arch_config["arch_str"]),
|
|
"num_classes": arch_config["class_num"],
|
|
},
|
|
None,
|
|
)
|
|
if "train_times" in results: # new version
|
|
xresult.update_train_info(
|
|
results["train_acc1es"],
|
|
results["train_acc5es"],
|
|
results["train_losses"],
|
|
results["train_times"],
|
|
)
|
|
xresult.update_eval(
|
|
results["valid_acc1es"], results["valid_losses"], results["valid_times"]
|
|
)
|
|
else:
|
|
network = get_cell_based_tiny_net(net_config)
|
|
network.load_state_dict(xresult.get_net_param())
|
|
if dataset == "cifar10-valid":
|
|
xresult.update_OLD_eval(
|
|
"x-valid", results["valid_acc1es"], results["valid_losses"]
|
|
)
|
|
loss, top1, top5, latencies = pure_evaluate(
|
|
dataloader_dict["{:}@{:}".format("cifar10", "test")], network.cuda()
|
|
)
|
|
xresult.update_OLD_eval(
|
|
"ori-test",
|
|
{results["total_epoch"] - 1: top1},
|
|
{results["total_epoch"] - 1: loss},
|
|
)
|
|
xresult.update_latency(latencies)
|
|
elif dataset == "cifar10":
|
|
xresult.update_OLD_eval(
|
|
"ori-test", results["valid_acc1es"], results["valid_losses"]
|
|
)
|
|
loss, top1, top5, latencies = pure_evaluate(
|
|
dataloader_dict["{:}@{:}".format(dataset, "test")], network.cuda()
|
|
)
|
|
xresult.update_latency(latencies)
|
|
elif dataset == "cifar100" or dataset == "ImageNet16-120":
|
|
xresult.update_OLD_eval(
|
|
"ori-test", results["valid_acc1es"], results["valid_losses"]
|
|
)
|
|
loss, top1, top5, latencies = pure_evaluate(
|
|
dataloader_dict["{:}@{:}".format(dataset, "valid")], network.cuda()
|
|
)
|
|
xresult.update_OLD_eval(
|
|
"x-valid",
|
|
{results["total_epoch"] - 1: top1},
|
|
{results["total_epoch"] - 1: loss},
|
|
)
|
|
loss, top1, top5, latencies = pure_evaluate(
|
|
dataloader_dict["{:}@{:}".format(dataset, "test")], network.cuda()
|
|
)
|
|
xresult.update_OLD_eval(
|
|
"x-test",
|
|
{results["total_epoch"] - 1: top1},
|
|
{results["total_epoch"] - 1: loss},
|
|
)
|
|
xresult.update_latency(latencies)
|
|
else:
|
|
raise ValueError("invalid dataset name : {:}".format(dataset))
|
|
return xresult
|
|
|
|
|
|
def account_one_arch(arch_index, arch_str, checkpoints, datasets, dataloader_dict):
|
|
information = ArchResults(arch_index, arch_str)
|
|
|
|
for checkpoint_path in checkpoints:
|
|
checkpoint = torch.load(checkpoint_path, map_location="cpu")
|
|
used_seed = checkpoint_path.name.split("-")[-1].split(".")[0]
|
|
ok_dataset = 0
|
|
for dataset in datasets:
|
|
if dataset not in checkpoint:
|
|
print(
|
|
"Can not find {:} in arch-{:} from {:}".format(
|
|
dataset, arch_index, checkpoint_path
|
|
)
|
|
)
|
|
continue
|
|
else:
|
|
ok_dataset += 1
|
|
results = checkpoint[dataset]
|
|
assert results[
|
|
"finish-train"
|
|
], "This {:} arch seed={:} does not finish train on {:} ::: {:}".format(
|
|
arch_index, used_seed, dataset, checkpoint_path
|
|
)
|
|
arch_config = {
|
|
"channel": results["channel"],
|
|
"num_cells": results["num_cells"],
|
|
"arch_str": arch_str,
|
|
"class_num": results["config"]["class_num"],
|
|
}
|
|
|
|
xresult = create_result_count(
|
|
used_seed, dataset, arch_config, results, dataloader_dict
|
|
)
|
|
information.update(dataset, int(used_seed), xresult)
|
|
if ok_dataset == 0:
|
|
raise ValueError("{:} does not find any data".format(checkpoint_path))
|
|
return information
|
|
|
|
|
|
def correct_time_related_info(arch_index: int, arch_infos: Dict[Text, ArchResults]):
|
|
# calibrate the latency based on NAS-Bench-201-v1_0-e61699.pth
|
|
cifar010_latency = (
|
|
api.get_latency(arch_index, "cifar10-valid", hp="200")
|
|
+ api.get_latency(arch_index, "cifar10", hp="200")
|
|
) / 2
|
|
cifar100_latency = api.get_latency(arch_index, "cifar100", hp="200")
|
|
image_latency = api.get_latency(arch_index, "ImageNet16-120", hp="200")
|
|
for hp, arch_info in arch_infos.items():
|
|
arch_info.reset_latency("cifar10-valid", None, cifar010_latency)
|
|
arch_info.reset_latency("cifar10", None, cifar010_latency)
|
|
arch_info.reset_latency("cifar100", None, cifar100_latency)
|
|
arch_info.reset_latency("ImageNet16-120", None, image_latency)
|
|
|
|
train_per_epoch_time = list(
|
|
arch_infos["12"].query("cifar10-valid", 777).train_times.values()
|
|
)
|
|
train_per_epoch_time = sum(train_per_epoch_time) / len(train_per_epoch_time)
|
|
eval_ori_test_time, eval_x_valid_time = [], []
|
|
for key, value in arch_infos["12"].query("cifar10-valid", 777).eval_times.items():
|
|
if key.startswith("ori-test@"):
|
|
eval_ori_test_time.append(value)
|
|
elif key.startswith("x-valid@"):
|
|
eval_x_valid_time.append(value)
|
|
else:
|
|
raise ValueError("-- {:} --".format(key))
|
|
eval_ori_test_time, eval_x_valid_time = float(np.mean(eval_ori_test_time)), float(
|
|
np.mean(eval_x_valid_time)
|
|
)
|
|
nums = {
|
|
"ImageNet16-120-train": 151700,
|
|
"ImageNet16-120-valid": 3000,
|
|
"ImageNet16-120-test": 6000,
|
|
"cifar10-valid-train": 25000,
|
|
"cifar10-valid-valid": 25000,
|
|
"cifar10-train": 50000,
|
|
"cifar10-test": 10000,
|
|
"cifar100-train": 50000,
|
|
"cifar100-test": 10000,
|
|
"cifar100-valid": 5000,
|
|
}
|
|
eval_per_sample = (eval_ori_test_time + eval_x_valid_time) / (
|
|
nums["cifar10-valid-valid"] + nums["cifar10-test"]
|
|
)
|
|
for hp, arch_info in arch_infos.items():
|
|
arch_info.reset_pseudo_train_times(
|
|
"cifar10-valid",
|
|
None,
|
|
train_per_epoch_time
|
|
/ nums["cifar10-valid-train"]
|
|
* nums["cifar10-valid-train"],
|
|
)
|
|
arch_info.reset_pseudo_train_times(
|
|
"cifar10",
|
|
None,
|
|
train_per_epoch_time / nums["cifar10-valid-train"] * nums["cifar10-train"],
|
|
)
|
|
arch_info.reset_pseudo_train_times(
|
|
"cifar100",
|
|
None,
|
|
train_per_epoch_time / nums["cifar10-valid-train"] * nums["cifar100-train"],
|
|
)
|
|
arch_info.reset_pseudo_train_times(
|
|
"ImageNet16-120",
|
|
None,
|
|
train_per_epoch_time
|
|
/ nums["cifar10-valid-train"]
|
|
* nums["ImageNet16-120-train"],
|
|
)
|
|
arch_info.reset_pseudo_eval_times(
|
|
"cifar10-valid",
|
|
None,
|
|
"x-valid",
|
|
eval_per_sample * nums["cifar10-valid-valid"],
|
|
)
|
|
arch_info.reset_pseudo_eval_times(
|
|
"cifar10-valid", None, "ori-test", eval_per_sample * nums["cifar10-test"]
|
|
)
|
|
arch_info.reset_pseudo_eval_times(
|
|
"cifar10", None, "ori-test", eval_per_sample * nums["cifar10-test"]
|
|
)
|
|
arch_info.reset_pseudo_eval_times(
|
|
"cifar100", None, "x-valid", eval_per_sample * nums["cifar100-valid"]
|
|
)
|
|
arch_info.reset_pseudo_eval_times(
|
|
"cifar100", None, "x-test", eval_per_sample * nums["cifar100-valid"]
|
|
)
|
|
arch_info.reset_pseudo_eval_times(
|
|
"cifar100", None, "ori-test", eval_per_sample * nums["cifar100-test"]
|
|
)
|
|
arch_info.reset_pseudo_eval_times(
|
|
"ImageNet16-120",
|
|
None,
|
|
"x-valid",
|
|
eval_per_sample * nums["ImageNet16-120-valid"],
|
|
)
|
|
arch_info.reset_pseudo_eval_times(
|
|
"ImageNet16-120",
|
|
None,
|
|
"x-test",
|
|
eval_per_sample * nums["ImageNet16-120-valid"],
|
|
)
|
|
arch_info.reset_pseudo_eval_times(
|
|
"ImageNet16-120",
|
|
None,
|
|
"ori-test",
|
|
eval_per_sample * nums["ImageNet16-120-test"],
|
|
)
|
|
return arch_infos
|
|
|
|
|
|
def simplify(save_dir, save_name, nets, total, sup_config):
|
|
dataloader_dict = get_nas_bench_loaders(6)
|
|
hps, seeds = ["12", "200"], set()
|
|
for hp in hps:
|
|
sub_save_dir = save_dir / "raw-data-{:}".format(hp)
|
|
ckps = sorted(list(sub_save_dir.glob("arch-*-seed-*.pth")))
|
|
seed2names = defaultdict(list)
|
|
for ckp in ckps:
|
|
parts = re.split("-|\.", ckp.name)
|
|
seed2names[parts[3]].append(ckp.name)
|
|
print("DIR : {:}".format(sub_save_dir))
|
|
nums = []
|
|
for seed, xlist in seed2names.items():
|
|
seeds.add(seed)
|
|
nums.append(len(xlist))
|
|
print(" [seed={:}] there are {:} checkpoints.".format(seed, len(xlist)))
|
|
assert (
|
|
len(nets) == total == max(nums)
|
|
), "there are some missed files : {:} vs {:}".format(max(nums), total)
|
|
print("{:} start simplify the checkpoint.".format(time_string()))
|
|
|
|
datasets = ("cifar10-valid", "cifar10", "cifar100", "ImageNet16-120")
|
|
|
|
# Create the directory to save the processed data
|
|
# full_save_dir contains all benchmark files with trained weights.
|
|
# simplify_save_dir contains all benchmark files without trained weights.
|
|
full_save_dir = save_dir / (save_name + "-FULL")
|
|
simple_save_dir = save_dir / (save_name + "-SIMPLIFY")
|
|
full_save_dir.mkdir(parents=True, exist_ok=True)
|
|
simple_save_dir.mkdir(parents=True, exist_ok=True)
|
|
# all data in memory
|
|
arch2infos, evaluated_indexes = dict(), set()
|
|
end_time, arch_time = time.time(), AverageMeter()
|
|
# save the meta information
|
|
temp_final_infos = {
|
|
"meta_archs": nets,
|
|
"total_archs": total,
|
|
"arch2infos": None,
|
|
"evaluated_indexes": set(),
|
|
}
|
|
pickle_save(temp_final_infos, str(full_save_dir / "meta.pickle"))
|
|
pickle_save(temp_final_infos, str(simple_save_dir / "meta.pickle"))
|
|
|
|
for index in tqdm(range(total)):
|
|
arch_str = nets[index]
|
|
hp2info = OrderedDict()
|
|
|
|
full_save_path = full_save_dir / "{:06d}.pickle".format(index)
|
|
simple_save_path = simple_save_dir / "{:06d}.pickle".format(index)
|
|
for hp in hps:
|
|
sub_save_dir = save_dir / "raw-data-{:}".format(hp)
|
|
ckps = [
|
|
sub_save_dir / "arch-{:06d}-seed-{:}.pth".format(index, seed)
|
|
for seed in seeds
|
|
]
|
|
ckps = [x for x in ckps if x.exists()]
|
|
if len(ckps) == 0:
|
|
raise ValueError("Invalid data : index={:}, hp={:}".format(index, hp))
|
|
|
|
arch_info = account_one_arch(
|
|
index, arch_str, ckps, datasets, dataloader_dict
|
|
)
|
|
hp2info[hp] = arch_info
|
|
|
|
hp2info = correct_time_related_info(index, hp2info)
|
|
evaluated_indexes.add(index)
|
|
|
|
to_save_data = OrderedDict(
|
|
{"12": hp2info["12"].state_dict(), "200": hp2info["200"].state_dict()}
|
|
)
|
|
pickle_save(to_save_data, str(full_save_path))
|
|
|
|
for hp in hps:
|
|
hp2info[hp].clear_params()
|
|
to_save_data = OrderedDict(
|
|
{"12": hp2info["12"].state_dict(), "200": hp2info["200"].state_dict()}
|
|
)
|
|
pickle_save(to_save_data, str(simple_save_path))
|
|
arch2infos[index] = to_save_data
|
|
# measure elapsed time
|
|
arch_time.update(time.time() - end_time)
|
|
end_time = time.time()
|
|
need_time = "{:}".format(
|
|
convert_secs2time(arch_time.avg * (total - index - 1), True)
|
|
)
|
|
# print('{:} {:06d}/{:06d} : still need {:}'.format(time_string(), index, total, need_time))
|
|
print("{:} {:} done.".format(time_string(), save_name))
|
|
final_infos = {
|
|
"meta_archs": nets,
|
|
"total_archs": total,
|
|
"arch2infos": arch2infos,
|
|
"evaluated_indexes": evaluated_indexes,
|
|
}
|
|
save_file_name = save_dir / "{:}.pickle".format(save_name)
|
|
pickle_save(final_infos, str(save_file_name))
|
|
# move the benchmark file to a new path
|
|
hd5sum = get_md5_file(str(save_file_name) + ".pbz2")
|
|
hd5_file_name = save_dir / "{:}-{:}.pickle.pbz2".format(NATS_TSS_BASE_NAME, hd5sum)
|
|
shutil.move(str(save_file_name) + ".pbz2", hd5_file_name)
|
|
print(
|
|
"Save {:} / {:} architecture results into {:} -> {:}.".format(
|
|
len(evaluated_indexes), total, save_file_name, hd5_file_name
|
|
)
|
|
)
|
|
# move the directory to a new path
|
|
hd5_full_save_dir = save_dir / "{:}-{:}-full".format(NATS_TSS_BASE_NAME, hd5sum)
|
|
hd5_simple_save_dir = save_dir / "{:}-{:}-simple".format(NATS_TSS_BASE_NAME, hd5sum)
|
|
shutil.move(full_save_dir, hd5_full_save_dir)
|
|
shutil.move(simple_save_dir, hd5_simple_save_dir)
|
|
# save the meta information for simple and full
|
|
# final_infos['arch2infos'] = None
|
|
# final_infos['evaluated_indexes'] = set()
|
|
|
|
|
|
def traverse_net(max_node):
|
|
aa_nas_bench_ss = get_search_spaces("cell", "nats-bench")
|
|
archs = CellStructure.gen_all(aa_nas_bench_ss, max_node, False)
|
|
print(
|
|
"There are {:} archs vs {:}.".format(
|
|
len(archs), len(aa_nas_bench_ss) ** ((max_node - 1) * max_node / 2)
|
|
)
|
|
)
|
|
|
|
random.seed(88) # please do not change this line for reproducibility
|
|
random.shuffle(archs)
|
|
assert (
|
|
archs[0].tostr()
|
|
== "|avg_pool_3x3~0|+|nor_conv_1x1~0|skip_connect~1|+|nor_conv_1x1~0|skip_connect~1|skip_connect~2|"
|
|
), "please check the 0-th architecture : {:}".format(archs[0])
|
|
assert (
|
|
archs[9].tostr()
|
|
== "|avg_pool_3x3~0|+|none~0|none~1|+|skip_connect~0|none~1|nor_conv_3x3~2|"
|
|
), "please check the 9-th architecture : {:}".format(archs[9])
|
|
assert (
|
|
archs[123].tostr()
|
|
== "|avg_pool_3x3~0|+|avg_pool_3x3~0|nor_conv_1x1~1|+|none~0|avg_pool_3x3~1|nor_conv_3x3~2|"
|
|
), "please check the 123-th architecture : {:}".format(archs[123])
|
|
return [x.tostr() for x in archs]
|
|
|
|
|
|
if __name__ == "__main__":
|
|
|
|
parser = argparse.ArgumentParser(
|
|
description="NATS-Bench (topology search space)",
|
|
formatter_class=argparse.ArgumentDefaultsHelpFormatter,
|
|
)
|
|
parser.add_argument(
|
|
"--base_save_dir",
|
|
type=str,
|
|
default="./output/NATS-Bench-topology",
|
|
help="The base-name of folder to save checkpoints and log.",
|
|
)
|
|
parser.add_argument(
|
|
"--max_node", type=int, default=4, help="The maximum node in a cell."
|
|
)
|
|
parser.add_argument(
|
|
"--channel", type=int, default=16, help="The number of channels."
|
|
)
|
|
parser.add_argument(
|
|
"--num_cells", type=int, default=5, help="The number of cells in one stage."
|
|
)
|
|
parser.add_argument("--check_N", type=int, default=15625, help="For safety.")
|
|
parser.add_argument(
|
|
"--save_name", type=str, default="process", help="The save directory."
|
|
)
|
|
args = parser.parse_args()
|
|
|
|
nets = traverse_net(args.max_node)
|
|
if len(nets) != args.check_N:
|
|
raise ValueError(
|
|
"Pre-num-check failed : {:} vs {:}".format(len(nets), args.check_N)
|
|
)
|
|
|
|
save_dir = Path(args.base_save_dir)
|
|
simplify(
|
|
save_dir,
|
|
args.save_name,
|
|
nets,
|
|
args.check_N,
|
|
{"name": "infer.tiny", "channel": args.channel, "num_cells": args.num_cells},
|
|
)
|