303 lines
11 KiB
Python
303 lines
11 KiB
Python
##################################################
|
|
# Copyright (c) Xuanyi Dong [GitHub D-X-Y], 2020 #
|
|
##################################################################
|
|
# Regularized Evolution for Image Classifier Architecture Search #
|
|
##################################################################
|
|
# python ./exps/NATS-algos/regularized_ea.py --dataset cifar10 --search_space tss --ea_cycles 200 --ea_population 10 --ea_sample_size 3 --rand_seed 1
|
|
# python ./exps/NATS-algos/regularized_ea.py --dataset cifar100 --search_space tss --ea_cycles 200 --ea_population 10 --ea_sample_size 3 --rand_seed 1
|
|
# python ./exps/NATS-algos/regularized_ea.py --dataset ImageNet16-120 --search_space tss --ea_cycles 200 --ea_population 10 --ea_sample_size 3 --rand_seed 1
|
|
# python ./exps/NATS-algos/regularized_ea.py --dataset cifar10 --search_space sss --ea_cycles 200 --ea_population 10 --ea_sample_size 3 --rand_seed 1
|
|
# python ./exps/NATS-algos/regularized_ea.py --dataset cifar100 --search_space sss --ea_cycles 200 --ea_population 10 --ea_sample_size 3 --rand_seed 1
|
|
# python ./exps/NATS-algos/regularized_ea.py --dataset ImageNet16-120 --search_space sss --ea_cycles 200 --ea_population 10 --ea_sample_size 3 --rand_seed 1
|
|
# python ./exps/NATS-algos/regularized_ea.py --dataset ${dataset} --search_space ${search_space} --time_budget ${time_budget} --ea_cycles 200 --ea_population 10 --ea_sample_size 3 --use_proxy 0
|
|
##################################################################
|
|
import os, sys, time, glob, random, argparse
|
|
import numpy as np, collections
|
|
from copy import deepcopy
|
|
import torch
|
|
import torch.nn as nn
|
|
|
|
from xautodl.config_utils import load_config, dict2config, configure2str
|
|
from xautodl.datasets import get_datasets, SearchDataset
|
|
from xautodl.procedures import (
|
|
prepare_seed,
|
|
prepare_logger,
|
|
save_checkpoint,
|
|
copy_checkpoint,
|
|
get_optim_scheduler,
|
|
)
|
|
from xautodl.utils import get_model_infos, obtain_accuracy
|
|
from xautodl.log_utils import AverageMeter, time_string, convert_secs2time
|
|
from xautodl.models import CellStructure, get_search_spaces
|
|
from nats_bench import create
|
|
|
|
|
|
class Model(object):
|
|
def __init__(self):
|
|
self.arch = None
|
|
self.accuracy = None
|
|
|
|
def __str__(self):
|
|
"""Prints a readable version of this bitstring."""
|
|
return "{:}".format(self.arch)
|
|
|
|
|
|
def random_topology_func(op_names, max_nodes=4):
|
|
# Return a random architecture
|
|
def random_architecture():
|
|
genotypes = []
|
|
for i in range(1, max_nodes):
|
|
xlist = []
|
|
for j in range(i):
|
|
node_str = "{:}<-{:}".format(i, j)
|
|
op_name = random.choice(op_names)
|
|
xlist.append((op_name, j))
|
|
genotypes.append(tuple(xlist))
|
|
return CellStructure(genotypes)
|
|
|
|
return random_architecture
|
|
|
|
|
|
def random_size_func(info):
|
|
# Return a random architecture
|
|
def random_architecture():
|
|
channels = []
|
|
for i in range(info["numbers"]):
|
|
channels.append(str(random.choice(info["candidates"])))
|
|
return ":".join(channels)
|
|
|
|
return random_architecture
|
|
|
|
|
|
def mutate_topology_func(op_names):
|
|
"""Computes the architecture for a child of the given parent architecture.
|
|
The parent architecture is cloned and mutated to produce the child architecture. The child architecture is mutated by randomly switch one operation to another.
|
|
"""
|
|
|
|
def mutate_topology_func(parent_arch):
|
|
child_arch = deepcopy(parent_arch)
|
|
node_id = random.randint(0, len(child_arch.nodes) - 1)
|
|
node_info = list(child_arch.nodes[node_id])
|
|
snode_id = random.randint(0, len(node_info) - 1)
|
|
xop = random.choice(op_names)
|
|
while xop == node_info[snode_id][0]:
|
|
xop = random.choice(op_names)
|
|
node_info[snode_id] = (xop, node_info[snode_id][1])
|
|
child_arch.nodes[node_id] = tuple(node_info)
|
|
return child_arch
|
|
|
|
return mutate_topology_func
|
|
|
|
|
|
def mutate_size_func(info):
|
|
"""Computes the architecture for a child of the given parent architecture.
|
|
The parent architecture is cloned and mutated to produce the child architecture. The child architecture is mutated by randomly switch one operation to another.
|
|
"""
|
|
|
|
def mutate_size_func(parent_arch):
|
|
child_arch = deepcopy(parent_arch)
|
|
child_arch = child_arch.split(":")
|
|
index = random.randint(0, len(child_arch) - 1)
|
|
child_arch[index] = str(random.choice(info["candidates"]))
|
|
return ":".join(child_arch)
|
|
|
|
return mutate_size_func
|
|
|
|
|
|
def regularized_evolution(
|
|
cycles,
|
|
population_size,
|
|
sample_size,
|
|
time_budget,
|
|
random_arch,
|
|
mutate_arch,
|
|
api,
|
|
use_proxy,
|
|
dataset,
|
|
):
|
|
"""Algorithm for regularized evolution (i.e. aging evolution).
|
|
|
|
Follows "Algorithm 1" in Real et al. "Regularized Evolution for Image
|
|
Classifier Architecture Search".
|
|
|
|
Args:
|
|
cycles: the number of cycles the algorithm should run for.
|
|
population_size: the number of individuals to keep in the population.
|
|
sample_size: the number of individuals that should participate in each tournament.
|
|
time_budget: the upper bound of searching cost
|
|
|
|
Returns:
|
|
history: a list of `Model` instances, representing all the models computed
|
|
during the evolution experiment.
|
|
"""
|
|
population = collections.deque()
|
|
api.reset_time()
|
|
history, total_time_cost = (
|
|
[],
|
|
[],
|
|
) # Not used by the algorithm, only used to report results.
|
|
current_best_index = []
|
|
# Initialize the population with random models.
|
|
while len(population) < population_size:
|
|
model = Model()
|
|
model.arch = random_arch()
|
|
model.accuracy, _, _, total_cost = api.simulate_train_eval(
|
|
model.arch, dataset, hp="12" if use_proxy else api.full_train_epochs
|
|
)
|
|
# Append the info
|
|
population.append(model)
|
|
history.append((model.accuracy, model.arch))
|
|
total_time_cost.append(total_cost)
|
|
current_best_index.append(
|
|
api.query_index_by_arch(max(history, key=lambda x: x[0])[1])
|
|
)
|
|
|
|
# Carry out evolution in cycles. Each cycle produces a model and removes another.
|
|
while total_time_cost[-1] < time_budget:
|
|
# Sample randomly chosen models from the current population.
|
|
start_time, sample = time.time(), []
|
|
while len(sample) < sample_size:
|
|
# Inefficient, but written this way for clarity. In the case of neural
|
|
# nets, the efficiency of this line is irrelevant because training neural
|
|
# nets is the rate-determining step.
|
|
candidate = random.choice(list(population))
|
|
sample.append(candidate)
|
|
|
|
# The parent is the best model in the sample.
|
|
parent = max(sample, key=lambda i: i.accuracy)
|
|
|
|
# Create the child model and store it.
|
|
child = Model()
|
|
child.arch = mutate_arch(parent.arch)
|
|
child.accuracy, _, _, total_cost = api.simulate_train_eval(
|
|
child.arch, dataset, hp="12" if use_proxy else api.full_train_epochs
|
|
)
|
|
# Append the info
|
|
population.append(child)
|
|
history.append((child.accuracy, child.arch))
|
|
current_best_index.append(
|
|
api.query_index_by_arch(max(history, key=lambda x: x[0])[1])
|
|
)
|
|
total_time_cost.append(total_cost)
|
|
|
|
# Remove the oldest model.
|
|
population.popleft()
|
|
return history, current_best_index, total_time_cost
|
|
|
|
|
|
def main(xargs, api):
|
|
torch.set_num_threads(4)
|
|
prepare_seed(xargs.rand_seed)
|
|
logger = prepare_logger(args)
|
|
|
|
search_space = get_search_spaces(xargs.search_space, "nats-bench")
|
|
if xargs.search_space == "tss":
|
|
random_arch = random_topology_func(search_space)
|
|
mutate_arch = mutate_topology_func(search_space)
|
|
else:
|
|
random_arch = random_size_func(search_space)
|
|
mutate_arch = mutate_size_func(search_space)
|
|
|
|
x_start_time = time.time()
|
|
logger.log("{:} use api : {:}".format(time_string(), api))
|
|
logger.log(
|
|
"-" * 30
|
|
+ " start searching with the time budget of {:} s".format(xargs.time_budget)
|
|
)
|
|
history, current_best_index, total_times = regularized_evolution(
|
|
xargs.ea_cycles,
|
|
xargs.ea_population,
|
|
xargs.ea_sample_size,
|
|
xargs.time_budget,
|
|
random_arch,
|
|
mutate_arch,
|
|
api,
|
|
xargs.use_proxy > 0,
|
|
xargs.dataset,
|
|
)
|
|
logger.log(
|
|
"{:} regularized_evolution finish with history of {:} arch with {:.1f} s (real-cost={:.2f} s).".format(
|
|
time_string(), len(history), total_times[-1], time.time() - x_start_time
|
|
)
|
|
)
|
|
best_arch = max(history, key=lambda x: x[0])[1]
|
|
logger.log("{:} best arch is {:}".format(time_string(), best_arch))
|
|
|
|
info = api.query_info_str_by_arch(
|
|
best_arch, "200" if xargs.search_space == "tss" else "90"
|
|
)
|
|
logger.log("{:}".format(info))
|
|
logger.log("-" * 100)
|
|
logger.close()
|
|
return logger.log_dir, current_best_index, total_times
|
|
|
|
|
|
if __name__ == "__main__":
|
|
parser = argparse.ArgumentParser("Regularized Evolution Algorithm")
|
|
parser.add_argument(
|
|
"--dataset",
|
|
type=str,
|
|
choices=["cifar10", "cifar100", "ImageNet16-120"],
|
|
help="Choose between Cifar10/100 and ImageNet-16.",
|
|
)
|
|
parser.add_argument(
|
|
"--search_space",
|
|
type=str,
|
|
choices=["tss", "sss"],
|
|
help="Choose the search space.",
|
|
)
|
|
# hyperparameters for REA
|
|
parser.add_argument("--ea_cycles", type=int, help="The number of cycles in EA.")
|
|
parser.add_argument("--ea_population", type=int, help="The population size in EA.")
|
|
parser.add_argument("--ea_sample_size", type=int, help="The sample size in EA.")
|
|
parser.add_argument(
|
|
"--time_budget",
|
|
type=int,
|
|
default=20000,
|
|
help="The total time cost budge for searching (in seconds).",
|
|
)
|
|
parser.add_argument(
|
|
"--use_proxy",
|
|
type=int,
|
|
default=1,
|
|
help="Whether to use the proxy (H0) task or not.",
|
|
)
|
|
#
|
|
parser.add_argument(
|
|
"--loops_if_rand", type=int, default=500, help="The total runs for evaluation."
|
|
)
|
|
# log
|
|
parser.add_argument(
|
|
"--save_dir",
|
|
type=str,
|
|
default="./output/search",
|
|
help="Folder to save checkpoints and log.",
|
|
)
|
|
parser.add_argument("--rand_seed", type=int, default=-1, help="manual seed")
|
|
args = parser.parse_args()
|
|
|
|
api = create(None, args.search_space, fast_mode=True, verbose=False)
|
|
|
|
args.save_dir = os.path.join(
|
|
"{:}-{:}".format(args.save_dir, args.search_space),
|
|
"{:}-T{:}{:}".format(
|
|
args.dataset, args.time_budget, "" if args.use_proxy > 0 else "-FULL"
|
|
),
|
|
"R-EA-SS{:}".format(args.ea_sample_size),
|
|
)
|
|
print("save-dir : {:}".format(args.save_dir))
|
|
print("xargs : {:}".format(args))
|
|
|
|
if args.rand_seed < 0:
|
|
save_dir, all_info = None, collections.OrderedDict()
|
|
for i in range(args.loops_if_rand):
|
|
print("{:} : {:03d}/{:03d}".format(time_string(), i, args.loops_if_rand))
|
|
args.rand_seed = random.randint(1, 100000)
|
|
save_dir, all_archs, all_total_times = main(args, api)
|
|
all_info[i] = {"all_archs": all_archs, "all_total_times": all_total_times}
|
|
save_path = save_dir / "results.pth"
|
|
print("save into {:}".format(save_path))
|
|
torch.save(all_info, save_path)
|
|
else:
|
|
main(args, api)
|