xautodl/exps/NATS-algos/search-size.py

583 lines
22 KiB
Python

##################################################
# Copyright (c) Xuanyi Dong [GitHub D-X-Y], 2020 #
###########################################################################################################################################
#
# In this file, we aims to evaluate three kinds of channel searching strategies:
# - channel-wise interpolation from "Network Pruning via Transformable Architecture Search, NeurIPS 2019"
# - masking + Gumbel-Softmax (mask_gumbel) from "FBNetV2: Differentiable Neural Architecture Search for Spatial and Channel Dimensions, CVPR 2020"
# - masking + sampling (mask_rl) from "Can Weight Sharing Outperform Random Architecture Search? An Investigation With TuNAS, CVPR 2020"
#
# For simplicity, we use tas, mask_gumbel, and mask_rl to refer these three strategies. Their official implementations are at the following links:
# - TAS: https://github.com/D-X-Y/AutoDL-Projects/blob/main/docs/NeurIPS-2019-TAS.md
# - FBNetV2: https://github.com/facebookresearch/mobile-vision
# - TuNAS: https://github.com/google-research/google-research/tree/master/tunas
####
# python ./exps/NATS-algos/search-size.py --dataset cifar10 --data_path $TORCH_HOME/cifar.python --algo mask_rl --arch_weight_decay 0 --warmup_ratio 0.25
####
# python ./exps/NATS-algos/search-size.py --dataset cifar10 --data_path $TORCH_HOME/cifar.python --algo tas --rand_seed 777
# python ./exps/NATS-algos/search-size.py --dataset cifar100 --data_path $TORCH_HOME/cifar.python --algo tas --rand_seed 777
# python ./exps/NATS-algos/search-size.py --dataset ImageNet16-120 --data_path $TORCH_HOME/cifar.python/ImageNet16 --algo tas --rand_seed 777
####
# python ./exps/NATS-algos/search-size.py --dataset cifar10 --data_path $TORCH_HOME/cifar.python --algo mask_gumbel --rand_seed 777
# python ./exps/NATS-algos/search-size.py --dataset cifar100 --data_path $TORCH_HOME/cifar.python --algo mask_gumbel --rand_seed 777
# python ./exps/NATS-algos/search-size.py --dataset ImageNet16-120 --data_path $TORCH_HOME/cifar.python/ImageNet16 --algo mask_gumbel --rand_seed 777
####
# python ./exps/NATS-algos/search-size.py --dataset cifar10 --data_path $TORCH_HOME/cifar.python --algo mask_rl --arch_weight_decay 0 --rand_seed 777 --use_api 0
# python ./exps/NATS-algos/search-size.py --dataset cifar100 --data_path $TORCH_HOME/cifar.python --algo mask_rl --arch_weight_decay 0 --rand_seed 777
# python ./exps/NATS-algos/search-size.py --dataset ImageNet16-120 --data_path $TORCH_HOME/cifar.python/ImageNet16 --algo mask_rl --arch_weight_decay 0 --rand_seed 777
###########################################################################################################################################
import os, sys, time, random, argparse
import numpy as np
from copy import deepcopy
import torch
import torch.nn as nn
from xautodl.config_utils import load_config, dict2config, configure2str
from xautodl.datasets import get_datasets, get_nas_search_loaders
from xautodl.procedures import (
prepare_seed,
prepare_logger,
save_checkpoint,
copy_checkpoint,
get_optim_scheduler,
)
from xautodl.utils import count_parameters_in_MB, obtain_accuracy
from xautodl.log_utils import AverageMeter, time_string, convert_secs2time
from xautodl.models import get_cell_based_tiny_net, get_search_spaces
from nats_bench import create
# Ad-hoc for RL algorithms.
class ExponentialMovingAverage(object):
"""Class that maintains an exponential moving average."""
def __init__(self, momentum):
self._numerator = 0
self._denominator = 0
self._momentum = momentum
def update(self, value):
self._numerator = (
self._momentum * self._numerator + (1 - self._momentum) * value
)
self._denominator = self._momentum * self._denominator + (1 - self._momentum)
@property
def value(self):
"""Return the current value of the moving average"""
return self._numerator / self._denominator
RL_BASELINE_EMA = ExponentialMovingAverage(0.95)
def search_func(
xloader,
network,
criterion,
scheduler,
w_optimizer,
a_optimizer,
enable_controller,
algo,
epoch_str,
print_freq,
logger,
):
data_time, batch_time = AverageMeter(), AverageMeter()
base_losses, base_top1, base_top5 = AverageMeter(), AverageMeter(), AverageMeter()
arch_losses, arch_top1, arch_top5 = AverageMeter(), AverageMeter(), AverageMeter()
end = time.time()
network.train()
for step, (base_inputs, base_targets, arch_inputs, arch_targets) in enumerate(
xloader
):
scheduler.update(None, 1.0 * step / len(xloader))
base_inputs = base_inputs.cuda(non_blocking=True)
arch_inputs = arch_inputs.cuda(non_blocking=True)
base_targets = base_targets.cuda(non_blocking=True)
arch_targets = arch_targets.cuda(non_blocking=True)
# measure data loading time
data_time.update(time.time() - end)
# Update the weights
network.zero_grad()
_, logits, _ = network(base_inputs)
base_loss = criterion(logits, base_targets)
base_loss.backward()
w_optimizer.step()
# record
base_prec1, base_prec5 = obtain_accuracy(
logits.data, base_targets.data, topk=(1, 5)
)
base_losses.update(base_loss.item(), base_inputs.size(0))
base_top1.update(base_prec1.item(), base_inputs.size(0))
base_top5.update(base_prec5.item(), base_inputs.size(0))
# update the architecture-weight
network.zero_grad()
a_optimizer.zero_grad()
_, logits, log_probs = network(arch_inputs)
arch_prec1, arch_prec5 = obtain_accuracy(
logits.data, arch_targets.data, topk=(1, 5)
)
if algo == "mask_rl":
with torch.no_grad():
RL_BASELINE_EMA.update(arch_prec1.item())
rl_advantage = arch_prec1 - RL_BASELINE_EMA.value
rl_log_prob = sum(log_probs)
arch_loss = -rl_advantage * rl_log_prob
elif algo == "tas" or algo == "mask_gumbel":
arch_loss = criterion(logits, arch_targets)
else:
raise ValueError("invalid algorightm name: {:}".format(algo))
if enable_controller:
arch_loss.backward()
a_optimizer.step()
# record
arch_losses.update(arch_loss.item(), arch_inputs.size(0))
arch_top1.update(arch_prec1.item(), arch_inputs.size(0))
arch_top5.update(arch_prec5.item(), arch_inputs.size(0))
# measure elapsed time
batch_time.update(time.time() - end)
end = time.time()
if step % print_freq == 0 or step + 1 == len(xloader):
Sstr = (
"*SEARCH* "
+ time_string()
+ " [{:}][{:03d}/{:03d}]".format(epoch_str, step, len(xloader))
)
Tstr = "Time {batch_time.val:.2f} ({batch_time.avg:.2f}) Data {data_time.val:.2f} ({data_time.avg:.2f})".format(
batch_time=batch_time, data_time=data_time
)
Wstr = "Base [Loss {loss.val:.3f} ({loss.avg:.3f}) Prec@1 {top1.val:.2f} ({top1.avg:.2f}) Prec@5 {top5.val:.2f} ({top5.avg:.2f})]".format(
loss=base_losses, top1=base_top1, top5=base_top5
)
Astr = "Arch [Loss {loss.val:.3f} ({loss.avg:.3f}) Prec@1 {top1.val:.2f} ({top1.avg:.2f}) Prec@5 {top5.val:.2f} ({top5.avg:.2f})]".format(
loss=arch_losses, top1=arch_top1, top5=arch_top5
)
logger.log(Sstr + " " + Tstr + " " + Wstr + " " + Astr)
return (
base_losses.avg,
base_top1.avg,
base_top5.avg,
arch_losses.avg,
arch_top1.avg,
arch_top5.avg,
)
def valid_func(xloader, network, criterion, logger):
data_time, batch_time = AverageMeter(), AverageMeter()
arch_losses, arch_top1, arch_top5 = AverageMeter(), AverageMeter(), AverageMeter()
end = time.time()
with torch.no_grad():
network.eval()
for step, (arch_inputs, arch_targets) in enumerate(xloader):
arch_targets = arch_targets.cuda(non_blocking=True)
# measure data loading time
data_time.update(time.time() - end)
# prediction
_, logits, _ = network(arch_inputs.cuda(non_blocking=True))
arch_loss = criterion(logits, arch_targets)
# record
arch_prec1, arch_prec5 = obtain_accuracy(
logits.data, arch_targets.data, topk=(1, 5)
)
arch_losses.update(arch_loss.item(), arch_inputs.size(0))
arch_top1.update(arch_prec1.item(), arch_inputs.size(0))
arch_top5.update(arch_prec5.item(), arch_inputs.size(0))
# measure elapsed time
batch_time.update(time.time() - end)
end = time.time()
return arch_losses.avg, arch_top1.avg, arch_top5.avg
def main(xargs):
assert torch.cuda.is_available(), "CUDA is not available."
torch.backends.cudnn.enabled = True
torch.backends.cudnn.benchmark = False
torch.backends.cudnn.deterministic = True
# torch.set_num_threads(xargs.workers)
prepare_seed(xargs.rand_seed)
logger = prepare_logger(args)
train_data, valid_data, xshape, class_num = get_datasets(
xargs.dataset, xargs.data_path, -1
)
if xargs.overwite_epochs is None:
extra_info = {"class_num": class_num, "xshape": xshape}
else:
extra_info = {
"class_num": class_num,
"xshape": xshape,
"epochs": xargs.overwite_epochs,
}
config = load_config(xargs.config_path, extra_info, logger)
search_loader, train_loader, valid_loader = get_nas_search_loaders(
train_data,
valid_data,
xargs.dataset,
"configs/nas-benchmark/",
(config.batch_size, config.test_batch_size),
xargs.workers,
)
logger.log(
"||||||| {:10s} ||||||| Search-Loader-Num={:}, Valid-Loader-Num={:}, batch size={:}".format(
xargs.dataset, len(search_loader), len(valid_loader), config.batch_size
)
)
logger.log("||||||| {:10s} ||||||| Config={:}".format(xargs.dataset, config))
search_space = get_search_spaces(xargs.search_space, "nats-bench")
model_config = dict2config(
dict(
name="generic",
super_type="search-shape",
candidate_Cs=search_space["candidates"],
max_num_Cs=search_space["numbers"],
num_classes=class_num,
genotype=args.genotype,
affine=bool(xargs.affine),
track_running_stats=bool(xargs.track_running_stats),
),
None,
)
logger.log("search space : {:}".format(search_space))
logger.log("model config : {:}".format(model_config))
search_model = get_cell_based_tiny_net(model_config)
search_model.set_algo(xargs.algo)
logger.log("{:}".format(search_model))
w_optimizer, w_scheduler, criterion = get_optim_scheduler(
search_model.weights, config
)
a_optimizer = torch.optim.Adam(
search_model.alphas,
lr=xargs.arch_learning_rate,
betas=(0.5, 0.999),
weight_decay=xargs.arch_weight_decay,
eps=xargs.arch_eps,
)
logger.log("w-optimizer : {:}".format(w_optimizer))
logger.log("a-optimizer : {:}".format(a_optimizer))
logger.log("w-scheduler : {:}".format(w_scheduler))
logger.log("criterion : {:}".format(criterion))
params = count_parameters_in_MB(search_model)
logger.log("The parameters of the search model = {:.2f} MB".format(params))
logger.log("search-space : {:}".format(search_space))
if bool(xargs.use_api):
api = create(None, "size", fast_mode=True, verbose=False)
else:
api = None
logger.log("{:} create API = {:} done".format(time_string(), api))
last_info, model_base_path, model_best_path = (
logger.path("info"),
logger.path("model"),
logger.path("best"),
)
network, criterion = search_model.cuda(), criterion.cuda() # use a single GPU
last_info, model_base_path, model_best_path = (
logger.path("info"),
logger.path("model"),
logger.path("best"),
)
if last_info.exists(): # automatically resume from previous checkpoint
logger.log(
"=> loading checkpoint of the last-info '{:}' start".format(last_info)
)
last_info = torch.load(last_info)
start_epoch = last_info["epoch"]
checkpoint = torch.load(last_info["last_checkpoint"])
genotypes = checkpoint["genotypes"]
valid_accuracies = checkpoint["valid_accuracies"]
search_model.load_state_dict(checkpoint["search_model"])
w_scheduler.load_state_dict(checkpoint["w_scheduler"])
w_optimizer.load_state_dict(checkpoint["w_optimizer"])
a_optimizer.load_state_dict(checkpoint["a_optimizer"])
logger.log(
"=> loading checkpoint of the last-info '{:}' start with {:}-th epoch.".format(
last_info, start_epoch
)
)
else:
logger.log("=> do not find the last-info file : {:}".format(last_info))
start_epoch, valid_accuracies, genotypes = 0, {"best": -1}, {-1: network.random}
# start training
start_time, search_time, epoch_time, total_epoch = (
time.time(),
AverageMeter(),
AverageMeter(),
config.epochs + config.warmup,
)
for epoch in range(start_epoch, total_epoch):
w_scheduler.update(epoch, 0.0)
need_time = "Time Left: {:}".format(
convert_secs2time(epoch_time.val * (total_epoch - epoch), True)
)
epoch_str = "{:03d}-{:03d}".format(epoch, total_epoch)
if (
xargs.warmup_ratio is None
or xargs.warmup_ratio <= float(epoch) / total_epoch
):
enable_controller = True
network.set_warmup_ratio(None)
else:
enable_controller = False
network.set_warmup_ratio(
1.0 - float(epoch) / total_epoch / xargs.warmup_ratio
)
logger.log(
"\n[Search the {:}-th epoch] {:}, LR={:}, controller-warmup={:}, enable_controller={:}".format(
epoch_str,
need_time,
min(w_scheduler.get_lr()),
network.warmup_ratio,
enable_controller,
)
)
if xargs.algo == "mask_gumbel" or xargs.algo == "tas":
network.set_tau(
xargs.tau_max
- (xargs.tau_max - xargs.tau_min) * epoch / (total_epoch - 1)
)
logger.log("[RESET tau as : {:}]".format(network.tau))
(
search_w_loss,
search_w_top1,
search_w_top5,
search_a_loss,
search_a_top1,
search_a_top5,
) = search_func(
search_loader,
network,
criterion,
w_scheduler,
w_optimizer,
a_optimizer,
enable_controller,
xargs.algo,
epoch_str,
xargs.print_freq,
logger,
)
search_time.update(time.time() - start_time)
logger.log(
"[{:}] search [base] : loss={:.2f}, accuracy@1={:.2f}%, accuracy@5={:.2f}%, time-cost={:.1f} s".format(
epoch_str, search_w_loss, search_w_top1, search_w_top5, search_time.sum
)
)
logger.log(
"[{:}] search [arch] : loss={:.2f}, accuracy@1={:.2f}%, accuracy@5={:.2f}%".format(
epoch_str, search_a_loss, search_a_top1, search_a_top5
)
)
genotype = network.genotype
logger.log("[{:}] - [get_best_arch] : {:}".format(epoch_str, genotype))
valid_a_loss, valid_a_top1, valid_a_top5 = valid_func(
valid_loader, network, criterion, logger
)
logger.log(
"[{:}] evaluate : loss={:.2f}, accuracy@1={:.2f}%, accuracy@5={:.2f}% | {:}".format(
epoch_str, valid_a_loss, valid_a_top1, valid_a_top5, genotype
)
)
valid_accuracies[epoch] = valid_a_top1
genotypes[epoch] = genotype
logger.log(
"<<<--->>> The {:}-th epoch : {:}".format(epoch_str, genotypes[epoch])
)
# save checkpoint
save_path = save_checkpoint(
{
"epoch": epoch + 1,
"args": deepcopy(xargs),
"search_model": search_model.state_dict(),
"w_optimizer": w_optimizer.state_dict(),
"a_optimizer": a_optimizer.state_dict(),
"w_scheduler": w_scheduler.state_dict(),
"genotypes": genotypes,
"valid_accuracies": valid_accuracies,
},
model_base_path,
logger,
)
last_info = save_checkpoint(
{
"epoch": epoch + 1,
"args": deepcopy(args),
"last_checkpoint": save_path,
},
logger.path("info"),
logger,
)
with torch.no_grad():
logger.log("{:}".format(search_model.show_alphas()))
if api is not None:
logger.log("{:}".format(api.query_by_arch(genotypes[epoch], "90")))
# measure elapsed time
epoch_time.update(time.time() - start_time)
start_time = time.time()
# the final post procedure : count the time
start_time = time.time()
genotype = network.genotype
search_time.update(time.time() - start_time)
valid_a_loss, valid_a_top1, valid_a_top5 = valid_func(
valid_loader, network, criterion, logger
)
logger.log(
"Last : the gentotype is : {:}, with the validation accuracy of {:.3f}%.".format(
genotype, valid_a_top1
)
)
logger.log("\n" + "-" * 100)
# check the performance from the architecture dataset
logger.log(
"[{:}] run {:} epochs, cost {:.1f} s, last-geno is {:}.".format(
xargs.algo, total_epoch, search_time.sum, genotype
)
)
if api is not None:
logger.log("{:}".format(api.query_by_arch(genotype, "90")))
logger.close()
if __name__ == "__main__":
parser = argparse.ArgumentParser("Weight sharing NAS methods to search for cells.")
parser.add_argument("--data_path", type=str, help="Path to dataset")
parser.add_argument(
"--dataset",
type=str,
choices=["cifar10", "cifar100", "ImageNet16-120"],
help="Choose between Cifar10/100 and ImageNet-16.",
)
parser.add_argument(
"--search_space",
type=str,
default="sss",
choices=["sss"],
help="The search space name.",
)
parser.add_argument(
"--algo",
type=str,
choices=["tas", "mask_gumbel", "mask_rl"],
help="The search space name.",
)
parser.add_argument(
"--genotype",
type=str,
default="|nor_conv_3x3~0|+|nor_conv_3x3~0|nor_conv_3x3~1|+|skip_connect~0|nor_conv_3x3~1|nor_conv_3x3~2|",
help="The genotype.",
)
parser.add_argument(
"--use_api",
type=int,
default=1,
choices=[0, 1],
help="Whether use API or not (which will cost much memory).",
)
# FOR GDAS
parser.add_argument(
"--tau_min", type=float, default=0.1, help="The minimum tau for Gumbel Softmax."
)
parser.add_argument(
"--tau_max", type=float, default=10, help="The maximum tau for Gumbel Softmax."
)
# FOR ALL
parser.add_argument(
"--warmup_ratio", type=float, help="The warmup ratio, if None, not use warmup."
)
#
parser.add_argument(
"--track_running_stats",
type=int,
default=0,
choices=[0, 1],
help="Whether use track_running_stats or not in the BN layer.",
)
parser.add_argument(
"--affine",
type=int,
default=0,
choices=[0, 1],
help="Whether use affine=True or False in the BN layer.",
)
parser.add_argument(
"--config_path",
type=str,
default="./configs/nas-benchmark/algos/weight-sharing.config",
help="The path of configuration.",
)
parser.add_argument(
"--overwite_epochs",
type=int,
help="The number of epochs to overwrite that value in config files.",
)
# architecture leraning rate
parser.add_argument(
"--arch_learning_rate",
type=float,
default=3e-4,
help="learning rate for arch encoding",
)
parser.add_argument(
"--arch_weight_decay",
type=float,
default=1e-3,
help="weight decay for arch encoding",
)
parser.add_argument(
"--arch_eps", type=float, default=1e-8, help="weight decay for arch encoding"
)
# log
parser.add_argument(
"--workers",
type=int,
default=2,
help="number of data loading workers (default: 2)",
)
parser.add_argument(
"--save_dir",
type=str,
default="./output/search",
help="Folder to save checkpoints and log.",
)
parser.add_argument(
"--print_freq", type=int, default=200, help="print frequency (default: 200)"
)
parser.add_argument("--rand_seed", type=int, help="manual seed")
args = parser.parse_args()
if args.rand_seed is None or args.rand_seed < 0:
args.rand_seed = random.randint(1, 100000)
dirname = "{:}-affine{:}_BN{:}-AWD{:}-WARM{:}".format(
args.algo,
args.affine,
args.track_running_stats,
args.arch_weight_decay,
args.warmup_ratio,
)
if args.overwite_epochs is not None:
dirname = dirname + "-E{:}".format(args.overwite_epochs)
args.save_dir = os.path.join(
"{:}-{:}".format(args.save_dir, args.search_space), args.dataset, dirname
)
main(args)