199 lines
		
	
	
		
			7.5 KiB
		
	
	
	
		
			Python
		
	
	
	
	
	
			
		
		
	
	
			199 lines
		
	
	
		
			7.5 KiB
		
	
	
	
		
			Python
		
	
	
	
	
	
#####################################################
 | 
						|
# Copyright (c) Xuanyi Dong [GitHub D-X-Y], 2019.08 #
 | 
						|
###########################################################################################################################################################
 | 
						|
# Before run these commands, the files must be properly put.
 | 
						|
#
 | 
						|
# CUDA_VISIBLE_DEVICES='' OMP_NUM_THREADS=4 python exps/experimental/test-ww-bench.py --search_space sss --base_path $HOME/.torch/NATS-tss-v1_0-3ffb9 --dataset cifar10
 | 
						|
# CUDA_VISIBLE_DEVICES='' OMP_NUM_THREADS=4 python exps/experimental/test-ww-bench.py --search_space sss --base_path $HOME/.torch/NATS-sss-v1_0-50262 --dataset cifar100
 | 
						|
# CUDA_VISIBLE_DEVICES='' OMP_NUM_THREADS=4 python exps/experimental/test-ww-bench.py --search_space sss --base_path $HOME/.torch/NATS-sss-v1_0-50262 --dataset ImageNet16-120
 | 
						|
# CUDA_VISIBLE_DEVICES='' OMP_NUM_THREADS=4 python exps/experimental/test-ww-bench.py --search_space tss --base_path $HOME/.torch/NATS-tss-v1_0-3ffb9 --dataset cifar10
 | 
						|
###########################################################################################################################################################
 | 
						|
import os, gc, sys, math, argparse, psutil
 | 
						|
import numpy as np
 | 
						|
import torch
 | 
						|
from pathlib import Path
 | 
						|
from collections import OrderedDict
 | 
						|
import matplotlib
 | 
						|
import seaborn as sns
 | 
						|
 | 
						|
matplotlib.use("agg")
 | 
						|
import matplotlib.pyplot as plt
 | 
						|
 | 
						|
lib_dir = (Path(__file__).parent / ".." / "..").resolve()
 | 
						|
print("LIB-DIR: {:}".format(lib_dir))
 | 
						|
if str(lib_dir) not in sys.path:
 | 
						|
    sys.path.insert(0, str(lib_dir))
 | 
						|
 | 
						|
from log_utils import time_string
 | 
						|
from nats_bench import create
 | 
						|
from models import get_cell_based_tiny_net
 | 
						|
from utils import weight_watcher
 | 
						|
 | 
						|
 | 
						|
"""
 | 
						|
def get_cor(A, B):
 | 
						|
  return float(np.corrcoef(A, B)[0,1])
 | 
						|
 | 
						|
 | 
						|
def tostr(accdict, norms):
 | 
						|
  xstr = []
 | 
						|
  for key, accs in accdict.items():
 | 
						|
    cor = get_cor(accs, norms)
 | 
						|
    xstr.append('{:}: {:.3f}'.format(key, cor))
 | 
						|
  return ' '.join(xstr)
 | 
						|
"""
 | 
						|
 | 
						|
 | 
						|
def evaluate(api, weight_dir, data: str):
 | 
						|
    print("\nEvaluate dataset={:}".format(data))
 | 
						|
    process = psutil.Process(os.getpid())
 | 
						|
    norms, accuracies = [], []
 | 
						|
    ok, total = 0, 5000
 | 
						|
    for idx in range(total):
 | 
						|
        arch_index = api.random()
 | 
						|
        api.reload(weight_dir, arch_index)
 | 
						|
        # compute the weight watcher results
 | 
						|
        config = api.get_net_config(arch_index, data)
 | 
						|
        net = get_cell_based_tiny_net(config)
 | 
						|
        meta_info = api.query_meta_info_by_index(
 | 
						|
            arch_index, hp="200" if api.search_space_name == "topology" else "90"
 | 
						|
        )
 | 
						|
        params = meta_info.get_net_param(
 | 
						|
            data, 888 if api.search_space_name == "topology" else 777
 | 
						|
        )
 | 
						|
        with torch.no_grad():
 | 
						|
            net.load_state_dict(params)
 | 
						|
            _, summary = weight_watcher.analyze(net, alphas=False)
 | 
						|
            if "lognorm" not in summary:
 | 
						|
                api.clear_params(arch_index, None)
 | 
						|
                del net
 | 
						|
                continue
 | 
						|
                continue
 | 
						|
            cur_norm = -summary["lognorm"]
 | 
						|
        api.clear_params(arch_index, None)
 | 
						|
        if math.isnan(cur_norm):
 | 
						|
            del net, meta_info
 | 
						|
            continue
 | 
						|
        else:
 | 
						|
            ok += 1
 | 
						|
            norms.append(cur_norm)
 | 
						|
        # query the accuracy
 | 
						|
        info = meta_info.get_metrics(
 | 
						|
            data,
 | 
						|
            "ori-test",
 | 
						|
            iepoch=None,
 | 
						|
            is_random=888 if api.search_space_name == "topology" else 777,
 | 
						|
        )
 | 
						|
        accuracies.append(info["accuracy"])
 | 
						|
        del net, meta_info
 | 
						|
        # print the information
 | 
						|
        if idx % 20 == 0:
 | 
						|
            gc.collect()
 | 
						|
            print(
 | 
						|
                "{:} {:04d}_{:04d}/{:04d} ({:.2f} MB memory)".format(
 | 
						|
                    time_string(), ok, idx, total, process.memory_info().rss / 1e6
 | 
						|
                )
 | 
						|
            )
 | 
						|
    return norms, accuracies
 | 
						|
 | 
						|
 | 
						|
def main(search_space, meta_file: str, weight_dir, save_dir, xdata):
 | 
						|
    save_dir.mkdir(parents=True, exist_ok=True)
 | 
						|
    api = create(meta_file, search_space, verbose=False)
 | 
						|
    datasets = ["cifar10-valid", "cifar10", "cifar100", "ImageNet16-120"]
 | 
						|
    print(time_string() + " " + "=" * 50)
 | 
						|
    for data in datasets:
 | 
						|
        hps = api.avaliable_hps
 | 
						|
        for hp in hps:
 | 
						|
            nums = api.statistics(data, hp=hp)
 | 
						|
            total = sum([k * v for k, v in nums.items()])
 | 
						|
            print(
 | 
						|
                "Using {:3s} epochs, trained on {:20s} : {:} trials in total ({:}).".format(
 | 
						|
                    hp, data, total, nums
 | 
						|
                )
 | 
						|
            )
 | 
						|
    print(time_string() + " " + "=" * 50)
 | 
						|
 | 
						|
    norms, accuracies = evaluate(api, weight_dir, xdata)
 | 
						|
 | 
						|
    indexes = list(range(len(norms)))
 | 
						|
    norm_indexes = sorted(indexes, key=lambda i: norms[i])
 | 
						|
    accy_indexes = sorted(indexes, key=lambda i: accuracies[i])
 | 
						|
    labels = []
 | 
						|
    for index in norm_indexes:
 | 
						|
        labels.append(accy_indexes.index(index))
 | 
						|
 | 
						|
    dpi, width, height = 200, 1400, 800
 | 
						|
    figsize = width / float(dpi), height / float(dpi)
 | 
						|
    LabelSize, LegendFontsize = 18, 12
 | 
						|
    resnet_scale, resnet_alpha = 120, 0.5
 | 
						|
 | 
						|
    fig = plt.figure(figsize=figsize)
 | 
						|
    ax = fig.add_subplot(111)
 | 
						|
    plt.xlim(min(indexes), max(indexes))
 | 
						|
    plt.ylim(min(indexes), max(indexes))
 | 
						|
    # plt.ylabel('y').set_rotation(30)
 | 
						|
    plt.yticks(
 | 
						|
        np.arange(min(indexes), max(indexes), max(indexes) // 3),
 | 
						|
        fontsize=LegendFontsize,
 | 
						|
        rotation="vertical",
 | 
						|
    )
 | 
						|
    plt.xticks(
 | 
						|
        np.arange(min(indexes), max(indexes), max(indexes) // 5),
 | 
						|
        fontsize=LegendFontsize,
 | 
						|
    )
 | 
						|
    ax.scatter(indexes, labels, marker="*", s=0.5, c="tab:red", alpha=0.8)
 | 
						|
    ax.scatter(indexes, indexes, marker="o", s=0.5, c="tab:blue", alpha=0.8)
 | 
						|
    ax.scatter([-1], [-1], marker="o", s=100, c="tab:blue", label="Test accuracy")
 | 
						|
    ax.scatter([-1], [-1], marker="*", s=100, c="tab:red", label="Weight watcher")
 | 
						|
    plt.grid(zorder=0)
 | 
						|
    ax.set_axisbelow(True)
 | 
						|
    plt.legend(loc=0, fontsize=LegendFontsize)
 | 
						|
    ax.set_xlabel(
 | 
						|
        "architecture ranking sorted by the test accuracy ", fontsize=LabelSize
 | 
						|
    )
 | 
						|
    ax.set_ylabel("architecture ranking computed by weight watcher", fontsize=LabelSize)
 | 
						|
    save_path = (save_dir / "{:}-{:}-test-ww.pdf".format(search_space, xdata)).resolve()
 | 
						|
    fig.savefig(save_path, dpi=dpi, bbox_inches="tight", format="pdf")
 | 
						|
    save_path = (save_dir / "{:}-{:}-test-ww.png".format(search_space, xdata)).resolve()
 | 
						|
    fig.savefig(save_path, dpi=dpi, bbox_inches="tight", format="png")
 | 
						|
    print("{:} save into {:}".format(time_string(), save_path))
 | 
						|
 | 
						|
    print("{:} finish this test.".format(time_string()))
 | 
						|
 | 
						|
 | 
						|
if __name__ == "__main__":
 | 
						|
    parser = argparse.ArgumentParser("Analysis of NAS-Bench-201")
 | 
						|
    parser.add_argument(
 | 
						|
        "--save_dir",
 | 
						|
        type=str,
 | 
						|
        default="./output/vis-nas-bench/",
 | 
						|
        help="The base-name of folder to save checkpoints and log.",
 | 
						|
    )
 | 
						|
    parser.add_argument(
 | 
						|
        "--search_space",
 | 
						|
        type=str,
 | 
						|
        default=None,
 | 
						|
        choices=["tss", "sss"],
 | 
						|
        help="The search space.",
 | 
						|
    )
 | 
						|
    parser.add_argument(
 | 
						|
        "--base_path",
 | 
						|
        type=str,
 | 
						|
        default=None,
 | 
						|
        help="The path to the NAS-Bench-201 benchmark file and weight dir.",
 | 
						|
    )
 | 
						|
    parser.add_argument("--dataset", type=str, default=None, help=".")
 | 
						|
    args = parser.parse_args()
 | 
						|
 | 
						|
    save_dir = Path(args.save_dir)
 | 
						|
    save_dir.mkdir(parents=True, exist_ok=True)
 | 
						|
    meta_file = Path(args.base_path + ".pth")
 | 
						|
    weight_dir = Path(args.base_path + "-full")
 | 
						|
    assert meta_file.exists(), "invalid path for api : {:}".format(meta_file)
 | 
						|
    assert (
 | 
						|
        weight_dir.exists() and weight_dir.is_dir()
 | 
						|
    ), "invalid path for weight dir : {:}".format(weight_dir)
 | 
						|
 | 
						|
    main(args.search_space, str(meta_file), weight_dir, save_dir, args.dataset)
 |