207 lines
6.1 KiB
Python
207 lines
6.1 KiB
Python
#####################################################
|
|
# Copyright (c) Xuanyi Dong [GitHub D-X-Y], 2021.02 #
|
|
#####################################################
|
|
# Refer to:
|
|
# - https://github.com/microsoft/qlib/blob/main/examples/workflow_by_code.ipynb
|
|
# - https://github.com/microsoft/qlib/blob/main/examples/workflow_by_code.py
|
|
# python exps/trading/workflow_tt.py --gpu 1 --market csi300
|
|
#####################################################
|
|
import yaml
|
|
import argparse
|
|
|
|
from xautodl.procedures.q_exps import update_gpu
|
|
from xautodl.procedures.q_exps import update_market
|
|
from xautodl.procedures.q_exps import run_exp
|
|
|
|
import qlib
|
|
from qlib.config import C
|
|
from qlib.config import REG_CN
|
|
from qlib.utils import init_instance_by_config
|
|
from qlib.workflow import R
|
|
|
|
|
|
def main(xargs):
|
|
dataset_config = {
|
|
"class": "DatasetH",
|
|
"module_path": "qlib.data.dataset",
|
|
"kwargs": {
|
|
"handler": {
|
|
"class": "Alpha360",
|
|
"module_path": "qlib.contrib.data.handler",
|
|
"kwargs": {
|
|
"start_time": "2008-01-01",
|
|
"end_time": "2020-08-01",
|
|
"fit_start_time": "2008-01-01",
|
|
"fit_end_time": "2014-12-31",
|
|
"instruments": xargs.market,
|
|
"infer_processors": [
|
|
{
|
|
"class": "RobustZScoreNorm",
|
|
"kwargs": {"fields_group": "feature", "clip_outlier": True},
|
|
},
|
|
{"class": "Fillna", "kwargs": {"fields_group": "feature"}},
|
|
],
|
|
"learn_processors": [
|
|
{"class": "DropnaLabel"},
|
|
{"class": "CSRankNorm", "kwargs": {"fields_group": "label"}},
|
|
],
|
|
"label": ["Ref($close, -2) / Ref($close, -1) - 1"],
|
|
},
|
|
},
|
|
"segments": {
|
|
"train": ("2008-01-01", "2014-12-31"),
|
|
"valid": ("2015-01-01", "2016-12-31"),
|
|
"test": ("2017-01-01", "2020-08-01"),
|
|
},
|
|
},
|
|
}
|
|
|
|
model_config = {
|
|
"class": "QuantTransformer",
|
|
"module_path": "xautodl.trade_models.quant_transformer",
|
|
"kwargs": {
|
|
"net_config": None,
|
|
"opt_config": None,
|
|
"GPU": "0",
|
|
"metric": "loss",
|
|
},
|
|
}
|
|
|
|
port_analysis_config = {
|
|
"strategy": {
|
|
"class": "TopkDropoutStrategy",
|
|
"module_path": "qlib.contrib.strategy.strategy",
|
|
"kwargs": {
|
|
"topk": 50,
|
|
"n_drop": 5,
|
|
},
|
|
},
|
|
"backtest": {
|
|
"verbose": False,
|
|
"limit_threshold": 0.095,
|
|
"account": 100000000,
|
|
"benchmark": "SH000300",
|
|
"deal_price": "close",
|
|
"open_cost": 0.0005,
|
|
"close_cost": 0.0015,
|
|
"min_cost": 5,
|
|
},
|
|
}
|
|
|
|
record_config = [
|
|
{
|
|
"class": "SignalRecord",
|
|
"module_path": "qlib.workflow.record_temp",
|
|
"kwargs": dict(),
|
|
},
|
|
{
|
|
"class": "SigAnaRecord",
|
|
"module_path": "qlib.workflow.record_temp",
|
|
"kwargs": dict(ana_long_short=False, ann_scaler=252),
|
|
},
|
|
{
|
|
"class": "PortAnaRecord",
|
|
"module_path": "qlib.workflow.record_temp",
|
|
"kwargs": dict(config=port_analysis_config),
|
|
},
|
|
]
|
|
|
|
provider_uri = "~/.qlib/qlib_data/cn_data"
|
|
qlib.init(provider_uri=provider_uri, region=REG_CN)
|
|
|
|
from qlib.utils import init_instance_by_config
|
|
|
|
xconfig = """
|
|
model:
|
|
class: SFM
|
|
module_path: qlib.contrib.model.pytorch_sfm
|
|
kwargs:
|
|
d_feat: 6
|
|
hidden_size: 64
|
|
output_dim: 32
|
|
freq_dim: 25
|
|
dropout_W: 0.5
|
|
dropout_U: 0.5
|
|
n_epochs: 20
|
|
lr: 1e-3
|
|
batch_size: 1600
|
|
early_stop: 20
|
|
eval_steps: 5
|
|
loss: mse
|
|
optimizer: adam
|
|
GPU: 0
|
|
"""
|
|
xconfig = """
|
|
model:
|
|
class: TabnetModel
|
|
module_path: qlib.contrib.model.pytorch_tabnet
|
|
kwargs:
|
|
d_feat: 360
|
|
pretrain: True
|
|
"""
|
|
xconfig = """
|
|
model:
|
|
class: GRU
|
|
module_path: qlib.contrib.model.pytorch_gru
|
|
kwargs:
|
|
d_feat: 6
|
|
hidden_size: 64
|
|
num_layers: 4
|
|
dropout: 0.0
|
|
n_epochs: 200
|
|
lr: 0.001
|
|
early_stop: 20
|
|
batch_size: 800
|
|
metric: loss
|
|
loss: mse
|
|
GPU: 0
|
|
"""
|
|
xconfig = yaml.safe_load(xconfig)
|
|
model = init_instance_by_config(xconfig["model"])
|
|
from xautodl.utils.flop_benchmark import count_parameters_in_MB
|
|
|
|
# print(count_parameters_in_MB(model.tabnet_model))
|
|
import pdb
|
|
|
|
pdb.set_trace()
|
|
|
|
save_dir = "{:}-{:}".format(xargs.save_dir, xargs.market)
|
|
dataset = init_instance_by_config(dataset_config)
|
|
for irun in range(xargs.times):
|
|
xmodel_config = model_config.copy()
|
|
xmodel_config = update_gpu(xmodel_config, xargs.gpu)
|
|
task_config = dict(
|
|
model=xmodel_config, dataset=dataset_config, record=record_config
|
|
)
|
|
|
|
run_exp(
|
|
task_config,
|
|
dataset,
|
|
xargs.name,
|
|
"recorder-{:02d}-{:02d}".format(irun, xargs.times),
|
|
save_dir,
|
|
)
|
|
|
|
|
|
if __name__ == "__main__":
|
|
parser = argparse.ArgumentParser("Vanilla Transformable Transformer")
|
|
parser.add_argument(
|
|
"--save_dir",
|
|
type=str,
|
|
default="./outputs/vtt-runs",
|
|
help="The checkpoint directory.",
|
|
)
|
|
parser.add_argument(
|
|
"--name", type=str, default="Transformer", help="The experiment name."
|
|
)
|
|
parser.add_argument("--times", type=int, default=10, help="The repeated run times.")
|
|
parser.add_argument(
|
|
"--gpu", type=int, default=0, help="The GPU ID used for train / test."
|
|
)
|
|
parser.add_argument(
|
|
"--market", type=str, default="all", help="The market indicator."
|
|
)
|
|
args = parser.parse_args()
|
|
|
|
main(args)
|