xautodl/exps/NAS-Bench-201/test-weights.py
2020-03-21 18:24:48 -07:00

115 lines
5.2 KiB
Python

#####################################################
# Copyright (c) Xuanyi Dong [GitHub D-X-Y], 2019.08 #
###############################################################################################
# Before run these commands, the files must be properly put.
# python exps/NAS-Bench-201/test-weights.py --base_path $HOME/.torch/NAS-Bench-201-v1_0-e61699
# python exps/NAS-Bench-201/test-weights.py --base_path $HOME/.torch/NAS-Bench-201-v1_1-096897 --dataset cifar10-valid --use_12 1 --use_valid 1
# bash ./scripts-search/NAS-Bench-201/test-weights.sh cifar10-valid 1
###############################################################################################
import os, gc, sys, math, argparse, psutil
import numpy as np
import torch
from pathlib import Path
from collections import OrderedDict
lib_dir = (Path(__file__).parent / '..' / '..' / 'lib').resolve()
if str(lib_dir) not in sys.path: sys.path.insert(0, str(lib_dir))
from nas_201_api import NASBench201API as API
from log_utils import time_string
from models import get_cell_based_tiny_net
from utils import weight_watcher
def get_cor(A, B):
return float(np.corrcoef(A, B)[0,1])
def tostr(accdict, norms):
xstr = []
for key, accs in accdict.items():
cor = get_cor(accs, norms)
xstr.append('{:}: {:.3f}'.format(key, cor))
return ' '.join(xstr)
def evaluate(api, weight_dir, data: str, use_12epochs_result: bool):
print('\nEvaluate dataset={:}'.format(data))
norms, process = [], psutil.Process(os.getpid())
final_val_accs = OrderedDict({'cifar10': [], 'cifar100': [], 'ImageNet16-120': []})
final_test_accs = OrderedDict({'cifar10': [], 'cifar100': [], 'ImageNet16-120': []})
for idx in range(len(api)):
# info = api.get_more_info(idx, data, use_12epochs_result=use_12epochs_result, is_random=False)
# import pdb; pdb.set_trace()
for key in ['cifar10-valid', 'cifar10', 'cifar100', 'ImageNet16-120']:
info = api.get_more_info(idx, key, use_12epochs_result=False, is_random=False)
if key == 'cifar10-valid':
final_val_accs['cifar10'].append(info['valid-accuracy'])
elif key == 'cifar10':
final_test_accs['cifar10'].append(info['test-accuracy'])
else:
final_test_accs[key].append(info['test-accuracy'])
final_val_accs[key].append(info['valid-accuracy'])
config = api.get_net_config(idx, data)
net = get_cell_based_tiny_net(config)
api.reload(weight_dir, idx)
params = api.get_net_param(idx, data, None, use_12epochs_result=use_12epochs_result)
cur_norms = []
for seed, param in params.items():
with torch.no_grad():
net.load_state_dict(param)
_, summary = weight_watcher.analyze(net, alphas=False)
cur_norms.append(-summary['lognorm'])
cur_norm = float(np.mean(cur_norms))
if math.isnan(cur_norm):
print (' IGNORE {:} due to nan.'.format(idx))
continue
norms.append(cur_norm)
api.clear_params(idx, None)
if idx % 200 == 199 or idx + 1 == len(api):
head = '{:05d}/{:05d}'.format(idx, len(api))
stem_val = tostr(final_val_accs, norms)
stem_test = tostr(final_test_accs, norms)
print('{:} {:} {:} with {:} epochs ({:.2f} MB memory)'.format(time_string(), head, data, 12 if use_12epochs_result else 200, process.memory_info().rss / 1e6))
print(' [Valid] -->> {:}'.format(stem_val))
print(' [Test.] -->> {:}'.format(stem_test))
gc.collect()
def main(meta_file: str, weight_dir, save_dir, xdata, use_12epochs_result):
api = API(meta_file)
datasets = ['cifar10-valid', 'cifar10', 'cifar100', 'ImageNet16-120']
print(time_string() + ' ' + '='*50)
for data in datasets:
nums = api.statistics(data, True)
total = sum([k*v for k, v in nums.items()])
print('Using 012 epochs, trained on {:20s} : {:} trials in total ({:}).'.format(data, total, nums))
print(time_string() + ' ' + '='*50)
for data in datasets:
nums = api.statistics(data, False)
total = sum([k*v for k, v in nums.items()])
print('Using 200 epochs, trained on {:20s} : {:} trials in total ({:}).'.format(data, total, nums))
print(time_string() + ' ' + '='*50)
#evaluate(api, weight_dir, 'cifar10-valid', False, True)
evaluate(api, weight_dir, xdata, use_12epochs_result)
print('{:} finish this test.'.format(time_string()))
if __name__ == '__main__':
parser = argparse.ArgumentParser("Analysis of NAS-Bench-201")
parser.add_argument('--save_dir', type=str, default='./output/search-cell-nas-bench-201/visuals', help='The base-name of folder to save checkpoints and log.')
parser.add_argument('--base_path', type=str, default=None, help='The path to the NAS-Bench-201 benchmark file and weight dir.')
parser.add_argument('--dataset' , type=str, default=None, help='.')
parser.add_argument('--use_12' , type=int, default=None, help='.')
args = parser.parse_args()
save_dir = Path(args.save_dir)
save_dir.mkdir(parents=True, exist_ok=True)
meta_file = Path(args.base_path + '.pth')
weight_dir = Path(args.base_path + '-archive')
assert meta_file.exists(), 'invalid path for api : {:}'.format(meta_file)
assert weight_dir.exists() and weight_dir.is_dir(), 'invalid path for weight dir : {:}'.format(weight_dir)
main(str(meta_file), weight_dir, save_dir, args.dataset, bool(args.use_12))