283 lines
16 KiB
Python
283 lines
16 KiB
Python
##################################################
|
|
# Copyright (c) Xuanyi Dong [GitHub D-X-Y], 2020 #
|
|
######################################################################################
|
|
# One-Shot Neural Architecture Search via Self-Evaluated Template Network, ICCV 2019 #
|
|
######################################################################################
|
|
import sys, time, random, argparse
|
|
import numpy as np
|
|
from copy import deepcopy
|
|
import torch
|
|
import torch.nn as nn
|
|
from pathlib import Path
|
|
lib_dir = (Path(__file__).parent / '..' / '..' / 'lib').resolve()
|
|
if str(lib_dir) not in sys.path: sys.path.insert(0, str(lib_dir))
|
|
from config_utils import load_config, dict2config, configure2str
|
|
from datasets import get_datasets, get_nas_search_loaders
|
|
from procedures import prepare_seed, prepare_logger, save_checkpoint, copy_checkpoint, get_optim_scheduler
|
|
from utils import get_model_infos, obtain_accuracy
|
|
from log_utils import AverageMeter, time_string, convert_secs2time
|
|
from models import get_cell_based_tiny_net, get_search_spaces
|
|
from nas_201_api import NASBench201API as API
|
|
|
|
|
|
def search_func(xloader, network, criterion, scheduler, w_optimizer, a_optimizer, epoch_str, print_freq, logger):
|
|
data_time, batch_time = AverageMeter(), AverageMeter()
|
|
base_losses, base_top1, base_top5 = AverageMeter(), AverageMeter(), AverageMeter()
|
|
arch_losses, arch_top1, arch_top5 = AverageMeter(), AverageMeter(), AverageMeter()
|
|
end = time.time()
|
|
network.train()
|
|
for step, (base_inputs, base_targets, arch_inputs, arch_targets) in enumerate(xloader):
|
|
scheduler.update(None, 1.0 * step / len(xloader))
|
|
base_targets = base_targets.cuda(non_blocking=True)
|
|
arch_targets = arch_targets.cuda(non_blocking=True)
|
|
# measure data loading time
|
|
data_time.update(time.time() - end)
|
|
|
|
# update the weights
|
|
sampled_arch = network.module.dync_genotype(True)
|
|
network.module.set_cal_mode('dynamic', sampled_arch)
|
|
#network.module.set_cal_mode( 'urs' )
|
|
network.zero_grad()
|
|
_, logits = network(base_inputs)
|
|
base_loss = criterion(logits, base_targets)
|
|
base_loss.backward()
|
|
w_optimizer.step()
|
|
# record
|
|
base_prec1, base_prec5 = obtain_accuracy(logits.data, base_targets.data, topk=(1, 5))
|
|
base_losses.update(base_loss.item(), base_inputs.size(0))
|
|
base_top1.update (base_prec1.item(), base_inputs.size(0))
|
|
base_top5.update (base_prec5.item(), base_inputs.size(0))
|
|
|
|
# update the architecture-weight
|
|
network.module.set_cal_mode( 'joint' )
|
|
network.zero_grad()
|
|
_, logits = network(arch_inputs)
|
|
arch_loss = criterion(logits, arch_targets)
|
|
arch_loss.backward()
|
|
a_optimizer.step()
|
|
# record
|
|
arch_prec1, arch_prec5 = obtain_accuracy(logits.data, arch_targets.data, topk=(1, 5))
|
|
arch_losses.update(arch_loss.item(), arch_inputs.size(0))
|
|
arch_top1.update (arch_prec1.item(), arch_inputs.size(0))
|
|
arch_top5.update (arch_prec5.item(), arch_inputs.size(0))
|
|
|
|
# measure elapsed time
|
|
batch_time.update(time.time() - end)
|
|
end = time.time()
|
|
|
|
if step % print_freq == 0 or step + 1 == len(xloader):
|
|
Sstr = '*SEARCH* ' + time_string() + ' [{:}][{:03d}/{:03d}]'.format(epoch_str, step, len(xloader))
|
|
Tstr = 'Time {batch_time.val:.2f} ({batch_time.avg:.2f}) Data {data_time.val:.2f} ({data_time.avg:.2f})'.format(batch_time=batch_time, data_time=data_time)
|
|
Wstr = 'Base [Loss {loss.val:.3f} ({loss.avg:.3f}) Prec@1 {top1.val:.2f} ({top1.avg:.2f}) Prec@5 {top5.val:.2f} ({top5.avg:.2f})]'.format(loss=base_losses, top1=base_top1, top5=base_top5)
|
|
Astr = 'Arch [Loss {loss.val:.3f} ({loss.avg:.3f}) Prec@1 {top1.val:.2f} ({top1.avg:.2f}) Prec@5 {top5.val:.2f} ({top5.avg:.2f})]'.format(loss=arch_losses, top1=arch_top1, top5=arch_top5)
|
|
logger.log(Sstr + ' ' + Tstr + ' ' + Wstr + ' ' + Astr)
|
|
#print (nn.functional.softmax(network.module.arch_parameters, dim=-1))
|
|
#print (network.module.arch_parameters)
|
|
return base_losses.avg, base_top1.avg, base_top5.avg, arch_losses.avg, arch_top1.avg, arch_top5.avg
|
|
|
|
|
|
def get_best_arch(xloader, network, n_samples):
|
|
with torch.no_grad():
|
|
network.eval()
|
|
archs, valid_accs = network.module.return_topK(n_samples), []
|
|
#print ('obtain the top-{:} architectures'.format(n_samples))
|
|
loader_iter = iter(xloader)
|
|
for i, sampled_arch in enumerate(archs):
|
|
network.module.set_cal_mode('dynamic', sampled_arch)
|
|
try:
|
|
inputs, targets = next(loader_iter)
|
|
except:
|
|
loader_iter = iter(xloader)
|
|
inputs, targets = next(loader_iter)
|
|
|
|
_, logits = network(inputs)
|
|
val_top1, val_top5 = obtain_accuracy(logits.cpu().data, targets.data, topk=(1, 5))
|
|
|
|
valid_accs.append(val_top1.item())
|
|
|
|
best_idx = np.argmax(valid_accs)
|
|
best_arch, best_valid_acc = archs[best_idx], valid_accs[best_idx]
|
|
return best_arch, best_valid_acc
|
|
|
|
|
|
def valid_func(xloader, network, criterion):
|
|
data_time, batch_time = AverageMeter(), AverageMeter()
|
|
arch_losses, arch_top1, arch_top5 = AverageMeter(), AverageMeter(), AverageMeter()
|
|
end = time.time()
|
|
with torch.no_grad():
|
|
network.eval()
|
|
for step, (arch_inputs, arch_targets) in enumerate(xloader):
|
|
arch_targets = arch_targets.cuda(non_blocking=True)
|
|
# measure data loading time
|
|
data_time.update(time.time() - end)
|
|
# prediction
|
|
_, logits = network(arch_inputs)
|
|
arch_loss = criterion(logits, arch_targets)
|
|
# record
|
|
arch_prec1, arch_prec5 = obtain_accuracy(logits.data, arch_targets.data, topk=(1, 5))
|
|
arch_losses.update(arch_loss.item(), arch_inputs.size(0))
|
|
arch_top1.update (arch_prec1.item(), arch_inputs.size(0))
|
|
arch_top5.update (arch_prec5.item(), arch_inputs.size(0))
|
|
# measure elapsed time
|
|
batch_time.update(time.time() - end)
|
|
end = time.time()
|
|
return arch_losses.avg, arch_top1.avg, arch_top5.avg
|
|
|
|
|
|
def main(xargs):
|
|
assert torch.cuda.is_available(), 'CUDA is not available.'
|
|
torch.backends.cudnn.enabled = True
|
|
torch.backends.cudnn.benchmark = False
|
|
torch.backends.cudnn.deterministic = True
|
|
torch.set_num_threads( xargs.workers )
|
|
prepare_seed(xargs.rand_seed)
|
|
logger = prepare_logger(args)
|
|
|
|
train_data, valid_data, xshape, class_num = get_datasets(xargs.dataset, xargs.data_path, -1)
|
|
config = load_config(xargs.config_path, {'class_num': class_num, 'xshape': xshape}, logger)
|
|
search_loader, _, valid_loader = get_nas_search_loaders(train_data, valid_data, xargs.dataset, 'configs/nas-benchmark/', \
|
|
(config.batch_size, config.test_batch_size), xargs.workers)
|
|
logger.log('||||||| {:10s} ||||||| Search-Loader-Num={:}, Valid-Loader-Num={:}, batch size={:}'.format(xargs.dataset, len(search_loader), len(valid_loader), config.batch_size))
|
|
logger.log('||||||| {:10s} ||||||| Config={:}'.format(xargs.dataset, config))
|
|
|
|
search_space = get_search_spaces('cell', xargs.search_space_name)
|
|
if xargs.model_config is None:
|
|
model_config = dict2config(
|
|
dict(name='SETN', C=xargs.channel, N=xargs.num_cells, max_nodes=xargs.max_nodes, num_classes=class_num,
|
|
space=search_space, affine=False, track_running_stats=bool(xargs.track_running_stats)), None)
|
|
else:
|
|
model_config = load_config(xargs.model_config, dict(num_classes=class_num, space=search_space, affine=False,
|
|
track_running_stats=bool(xargs.track_running_stats)), None)
|
|
logger.log('search space : {:}'.format(search_space))
|
|
search_model = get_cell_based_tiny_net(model_config)
|
|
|
|
w_optimizer, w_scheduler, criterion = get_optim_scheduler(search_model.get_weights(), config)
|
|
a_optimizer = torch.optim.Adam(search_model.get_alphas(), lr=xargs.arch_learning_rate, betas=(0.5, 0.999), weight_decay=xargs.arch_weight_decay)
|
|
logger.log('w-optimizer : {:}'.format(w_optimizer))
|
|
logger.log('a-optimizer : {:}'.format(a_optimizer))
|
|
logger.log('w-scheduler : {:}'.format(w_scheduler))
|
|
logger.log('criterion : {:}'.format(criterion))
|
|
flop, param = get_model_infos(search_model, xshape)
|
|
logger.log('FLOP = {:.2f} M, Params = {:.2f} MB'.format(flop, param))
|
|
logger.log('search-space : {:}'.format(search_space))
|
|
if xargs.arch_nas_dataset is None:
|
|
api = None
|
|
else:
|
|
api = API(xargs.arch_nas_dataset)
|
|
logger.log('{:} create API = {:} done'.format(time_string(), api))
|
|
|
|
last_info, model_base_path, model_best_path = logger.path('info'), logger.path('model'), logger.path('best')
|
|
network, criterion = torch.nn.DataParallel(search_model).cuda(), criterion.cuda()
|
|
|
|
if last_info.exists(): # automatically resume from previous checkpoint
|
|
logger.log("=> loading checkpoint of the last-info '{:}' start".format(last_info))
|
|
last_info = torch.load(last_info)
|
|
start_epoch = last_info['epoch']
|
|
checkpoint = torch.load(last_info['last_checkpoint'])
|
|
genotypes = checkpoint['genotypes']
|
|
valid_accuracies = checkpoint['valid_accuracies']
|
|
search_model.load_state_dict( checkpoint['search_model'] )
|
|
w_scheduler.load_state_dict ( checkpoint['w_scheduler'] )
|
|
w_optimizer.load_state_dict ( checkpoint['w_optimizer'] )
|
|
a_optimizer.load_state_dict ( checkpoint['a_optimizer'] )
|
|
logger.log("=> loading checkpoint of the last-info '{:}' start with {:}-th epoch.".format(last_info, start_epoch))
|
|
else:
|
|
logger.log("=> do not find the last-info file : {:}".format(last_info))
|
|
init_genotype, _ = get_best_arch(valid_loader, network, xargs.select_num)
|
|
start_epoch, valid_accuracies, genotypes = 0, {'best': -1}, {-1: init_genotype}
|
|
|
|
# start training
|
|
start_time, search_time, epoch_time, total_epoch = time.time(), AverageMeter(), AverageMeter(), config.epochs + config.warmup
|
|
for epoch in range(start_epoch, total_epoch):
|
|
w_scheduler.update(epoch, 0.0)
|
|
need_time = 'Time Left: {:}'.format( convert_secs2time(epoch_time.val * (total_epoch-epoch), True) )
|
|
epoch_str = '{:03d}-{:03d}'.format(epoch, total_epoch)
|
|
logger.log('\n[Search the {:}-th epoch] {:}, LR={:}'.format(epoch_str, need_time, min(w_scheduler.get_lr())))
|
|
|
|
search_w_loss, search_w_top1, search_w_top5, search_a_loss, search_a_top1, search_a_top5 \
|
|
= search_func(search_loader, network, criterion, w_scheduler, w_optimizer, a_optimizer, epoch_str, xargs.print_freq, logger)
|
|
search_time.update(time.time() - start_time)
|
|
logger.log('[{:}] search [base] : loss={:.2f}, accuracy@1={:.2f}%, accuracy@5={:.2f}%, time-cost={:.1f} s'.format(epoch_str, search_w_loss, search_w_top1, search_w_top5, search_time.sum))
|
|
logger.log('[{:}] search [arch] : loss={:.2f}, accuracy@1={:.2f}%, accuracy@5={:.2f}%'.format(epoch_str, search_a_loss, search_a_top1, search_a_top5))
|
|
|
|
genotype, temp_accuracy = get_best_arch(valid_loader, network, xargs.select_num)
|
|
network.module.set_cal_mode('dynamic', genotype)
|
|
valid_a_loss , valid_a_top1 , valid_a_top5 = valid_func(valid_loader, network, criterion)
|
|
logger.log('[{:}] evaluate : loss={:.2f}, accuracy@1={:.2f}%, accuracy@5={:.2f}% | {:}'.format(epoch_str, valid_a_loss, valid_a_top1, valid_a_top5, genotype))
|
|
#search_model.set_cal_mode('urs')
|
|
#valid_a_loss , valid_a_top1 , valid_a_top5 = valid_func(valid_loader, network, criterion)
|
|
#logger.log('[{:}] URS---evaluate : loss={:.2f}, accuracy@1={:.2f}%, accuracy@5={:.2f}%'.format(epoch_str, valid_a_loss, valid_a_top1, valid_a_top5))
|
|
#search_model.set_cal_mode('joint')
|
|
#valid_a_loss , valid_a_top1 , valid_a_top5 = valid_func(valid_loader, network, criterion)
|
|
#logger.log('[{:}] JOINT-evaluate : loss={:.2f}, accuracy@1={:.2f}%, accuracy@5={:.2f}%'.format(epoch_str, valid_a_loss, valid_a_top1, valid_a_top5))
|
|
#search_model.set_cal_mode('select')
|
|
#valid_a_loss , valid_a_top1 , valid_a_top5 = valid_func(valid_loader, network, criterion)
|
|
#logger.log('[{:}] Selec-evaluate : loss={:.2f}, accuracy@1={:.2f}%, accuracy@5={:.2f}%'.format(epoch_str, valid_a_loss, valid_a_top1, valid_a_top5))
|
|
# check the best accuracy
|
|
valid_accuracies[epoch] = valid_a_top1
|
|
|
|
genotypes[epoch] = genotype
|
|
logger.log('<<<--->>> The {:}-th epoch : {:}'.format(epoch_str, genotypes[epoch]))
|
|
# save checkpoint
|
|
save_path = save_checkpoint({'epoch' : epoch + 1,
|
|
'args' : deepcopy(xargs),
|
|
'search_model': search_model.state_dict(),
|
|
'w_optimizer' : w_optimizer.state_dict(),
|
|
'a_optimizer' : a_optimizer.state_dict(),
|
|
'w_scheduler' : w_scheduler.state_dict(),
|
|
'genotypes' : genotypes,
|
|
'valid_accuracies' : valid_accuracies},
|
|
model_base_path, logger)
|
|
last_info = save_checkpoint({
|
|
'epoch': epoch + 1,
|
|
'args' : deepcopy(args),
|
|
'last_checkpoint': save_path,
|
|
}, logger.path('info'), logger)
|
|
with torch.no_grad():
|
|
logger.log('{:}'.format(search_model.show_alphas()))
|
|
if api is not None: logger.log('{:}'.format(api.query_by_arch( genotypes[epoch] )))
|
|
# measure elapsed time
|
|
epoch_time.update(time.time() - start_time)
|
|
start_time = time.time()
|
|
|
|
# the final post procedure : count the time
|
|
start_time = time.time()
|
|
genotype, temp_accuracy = get_best_arch(valid_loader, network, xargs.select_num)
|
|
search_time.update(time.time() - start_time)
|
|
network.module.set_cal_mode('dynamic', genotype)
|
|
valid_a_loss , valid_a_top1 , valid_a_top5 = valid_func(valid_loader, network, criterion)
|
|
logger.log('Last : the gentotype is : {:}, with the validation accuracy of {:.3f}%.'.format(genotype, valid_a_top1))
|
|
|
|
logger.log('\n' + '-'*100)
|
|
# check the performance from the architecture dataset
|
|
logger.log('SETN : run {:} epochs, cost {:.1f} s, last-geno is {:}.'.format(total_epoch, search_time.sum, genotype))
|
|
if api is not None: logger.log('{:}'.format( api.query_by_arch(genotype) ))
|
|
logger.close()
|
|
|
|
|
|
|
|
if __name__ == '__main__':
|
|
parser = argparse.ArgumentParser("SETN")
|
|
parser.add_argument('--data_path', type=str, help='Path to dataset')
|
|
parser.add_argument('--dataset', type=str, choices=['cifar10', 'cifar100', 'ImageNet16-120'], help='Choose between Cifar10/100 and ImageNet-16.')
|
|
# channels and number-of-cells
|
|
parser.add_argument('--search_space_name', type=str, help='The search space name.')
|
|
parser.add_argument('--max_nodes', type=int, help='The maximum number of nodes.')
|
|
parser.add_argument('--channel', type=int, help='The number of channels.')
|
|
parser.add_argument('--num_cells', type=int, help='The number of cells in one stage.')
|
|
parser.add_argument('--select_num', type=int, help='The number of selected architectures to evaluate.')
|
|
parser.add_argument('--track_running_stats',type=int, choices=[0,1],help='Whether use track_running_stats or not in the BN layer.')
|
|
parser.add_argument('--config_path', type=str, help='The path of the configuration.')
|
|
# architecture leraning rate
|
|
parser.add_argument('--arch_learning_rate', type=float, default=3e-4, help='learning rate for arch encoding')
|
|
parser.add_argument('--arch_weight_decay', type=float, default=1e-3, help='weight decay for arch encoding')
|
|
# log
|
|
parser.add_argument('--workers', type=int, default=2, help='number of data loading workers (default: 2)')
|
|
parser.add_argument('--save_dir', type=str, help='Folder to save checkpoints and log.')
|
|
parser.add_argument('--arch_nas_dataset', type=str, help='The path to load the architecture dataset (tiny-nas-benchmark).')
|
|
parser.add_argument('--print_freq', type=int, help='print frequency (default: 200)')
|
|
parser.add_argument('--rand_seed', type=int, help='manual seed')
|
|
args = parser.parse_args()
|
|
if args.rand_seed is None or args.rand_seed < 0: args.rand_seed = random.randint(1, 100000)
|
|
main(args)
|