xautodl/data/README.BACK
2019-02-01 01:27:38 +11:00

91 lines
3.2 KiB
Plaintext
Executable File

# EraseReLU: A Simple Way to Ease the Training of Deep Convolution Neural Networks
This project implements [this paper](https://arxiv.org/abs/1709.07634) in [PyTorch](pytorch.org). The implementation refers to [ResNeXt-DenseNet](https://github.com/D-X-Y/ResNeXt-DenseNet)
## Usage
All the model definations are located in the directory `models`.
All the training scripts are located in the directory `scripts` and `Xscripts`.
To train the ResNet-110 with EraseReLU on CIFAR-10:
```bash
sh scripts/warmup_train_2gpu.sh resnet110_erase cifar10
```
To train the original ResNet-110 on CIFAR-10:
```bash
sh scripts/warmup_train_2gpu.sh resnet110 cifar10
```
### MiniImageNet for PatchShuffle
```
sh scripts-shuffle/train_resnet_00000.sh ResNet18
sh scripts-shuffle/train_resnet_10000.sh ResNet18
sh scripts-shuffle/train_resnet_11000.sh ResNet18
```
```
sh scripts-shuffle/train_pmd_00000.sh PMDNet18_300
sh scripts-shuffle/train_pmd_00000.sh PMDNet34_300
sh scripts-shuffle/train_pmd_00000.sh PMDNet50_300
sh scripts-shuffle/train_pmd_11000.sh PMDNet18_300
sh scripts-shuffle/train_pmd_11000.sh PMDNet34_300
sh scripts-shuffle/train_pmd_11000.sh PMDNet50_300
```
### ImageNet
- Use the scripts `train_imagenet.sh` to train models in PyTorch.
- Or you can use the codes in `extra_torch` to train models in Torch.
#### Group Noramlization
```
sh Xscripts/train_vgg_gn.sh 0,1,2,3,4,5,6,7 vgg16_gn 256
sh Xscripts/train_vgg_gn.sh 0,1,2,3,4,5,6,7 vgg16_gn 64
sh Xscripts/train_vgg_gn.sh 0,1,2,3,4,5,6,7 vgg16_gn 16
sh Xscripts/train_res_gn.sh 0,1,2,3,4,5,6,7 resnext50_32_4_gn 16
```
| Model | Batch Size | Top-1 Error | Top-5 Errpr |
|:--------------:|:----------:|:-----------:|:-----------:|
| VGG16-GN | 256 | 28.82 | 9.64 |
## Results
| Model | Error on CIFAR-10 | Error on CIFAR-100|
|:--------------:|:-----------------:|:-----------------:|
| ResNet-56 | 6.97 | 30.60 |
| ResNet-56 (ER) | 6.23 | 28.56 |
## Citation
If you find this project helos your research, please consider cite the paper:
```
@article{dong2017eraserelu,
title={EraseReLU: A Simple Way to Ease the Training of Deep Convolution Neural Networks},
author={Dong, Xuanyi and Kang, Guoliang and Zhan, Kun and Yang, Yi},
journal={arXiv preprint arXiv:1709.07634},
year={2017}
}
```
## Download the ImageNet dataset
The ImageNet Large Scale Visual Recognition Challenge (ILSVRC) dataset has 1000 categories and 1.2 million images. The images do not need to be preprocessed or packaged in any database, but the validation images need to be moved into appropriate subfolders.
1. Download the images from http://image-net.org/download-images
2. Extract the training data:
```bash
mkdir train && mv ILSVRC2012_img_train.tar train/ && cd train
tar -xvf ILSVRC2012_img_train.tar && rm -f ILSVRC2012_img_train.tar
find . -name "*.tar" | while read NAME ; do mkdir -p "${NAME%.tar}"; tar -xvf "${NAME}" -C "${NAME%.tar}"; rm -f "${NAME}"; done
cd ..
```
3. Extract the validation data and move images to subfolders:
```bash
mkdir val && mv ILSVRC2012_img_val.tar val/ && cd val && tar -xvf ILSVRC2012_img_val.tar
wget -qO- https://raw.githubusercontent.com/soumith/imagenetloader.torch/master/valprep.sh | bash
```