138 lines
4.7 KiB
Python
138 lines
4.7 KiB
Python
import os, sys, time
|
|
import numpy as np
|
|
import matplotlib
|
|
import random
|
|
matplotlib.use('agg')
|
|
import matplotlib.pyplot as plt
|
|
|
|
class AverageMeter(object):
|
|
"""Computes and stores the average and current value"""
|
|
def __init__(self):
|
|
self.reset()
|
|
|
|
def reset(self):
|
|
self.val = 0
|
|
self.avg = 0
|
|
self.sum = 0
|
|
self.count = 0
|
|
|
|
def update(self, val, n=1):
|
|
self.val = val
|
|
self.sum += val * n
|
|
self.count += n
|
|
self.avg = self.sum / self.count
|
|
|
|
|
|
class RecorderMeter(object):
|
|
"""Computes and stores the minimum loss value and its epoch index"""
|
|
def __init__(self, total_epoch):
|
|
self.reset(total_epoch)
|
|
|
|
def reset(self, total_epoch):
|
|
assert total_epoch > 0
|
|
self.total_epoch = total_epoch
|
|
self.current_epoch = 0
|
|
self.epoch_losses = np.zeros((self.total_epoch, 2), dtype=np.float32) # [epoch, train/val]
|
|
self.epoch_losses = self.epoch_losses - 1
|
|
|
|
self.epoch_accuracy= np.zeros((self.total_epoch, 2), dtype=np.float32) # [epoch, train/val]
|
|
self.epoch_accuracy= self.epoch_accuracy
|
|
|
|
def update(self, idx, train_loss, train_acc, val_loss, val_acc):
|
|
assert idx >= 0 and idx < self.total_epoch, 'total_epoch : {} , but update with the {} index'.format(self.total_epoch, idx)
|
|
self.epoch_losses [idx, 0] = train_loss
|
|
self.epoch_losses [idx, 1] = val_loss
|
|
self.epoch_accuracy[idx, 0] = train_acc
|
|
self.epoch_accuracy[idx, 1] = val_acc
|
|
self.current_epoch = idx + 1
|
|
return self.max_accuracy(False) == self.epoch_accuracy[idx, 1]
|
|
|
|
def max_accuracy(self, istrain):
|
|
if self.current_epoch <= 0: return 0
|
|
if istrain: return self.epoch_accuracy[:self.current_epoch, 0].max()
|
|
else: return self.epoch_accuracy[:self.current_epoch, 1].max()
|
|
|
|
def plot_curve(self, save_path):
|
|
title = 'the accuracy/loss curve of train/val'
|
|
dpi = 100
|
|
width, height = 1600, 1000
|
|
legend_fontsize = 10
|
|
figsize = width / float(dpi), height / float(dpi)
|
|
|
|
fig = plt.figure(figsize=figsize)
|
|
x_axis = np.array([i for i in range(self.total_epoch)]) # epochs
|
|
y_axis = np.zeros(self.total_epoch)
|
|
|
|
plt.xlim(0, self.total_epoch)
|
|
plt.ylim(0, 100)
|
|
interval_y = 5
|
|
interval_x = 5
|
|
plt.xticks(np.arange(0, self.total_epoch + interval_x, interval_x))
|
|
plt.yticks(np.arange(0, 100 + interval_y, interval_y))
|
|
plt.grid()
|
|
plt.title(title, fontsize=20)
|
|
plt.xlabel('the training epoch', fontsize=16)
|
|
plt.ylabel('accuracy', fontsize=16)
|
|
|
|
y_axis[:] = self.epoch_accuracy[:, 0]
|
|
plt.plot(x_axis, y_axis, color='g', linestyle='-', label='train-accuracy', lw=2)
|
|
plt.legend(loc=4, fontsize=legend_fontsize)
|
|
|
|
y_axis[:] = self.epoch_accuracy[:, 1]
|
|
plt.plot(x_axis, y_axis, color='y', linestyle='-', label='valid-accuracy', lw=2)
|
|
plt.legend(loc=4, fontsize=legend_fontsize)
|
|
|
|
|
|
y_axis[:] = self.epoch_losses[:, 0]
|
|
plt.plot(x_axis, y_axis*50, color='g', linestyle=':', label='train-loss-x50', lw=2)
|
|
plt.legend(loc=4, fontsize=legend_fontsize)
|
|
|
|
y_axis[:] = self.epoch_losses[:, 1]
|
|
plt.plot(x_axis, y_axis*50, color='y', linestyle=':', label='valid-loss-x50', lw=2)
|
|
plt.legend(loc=4, fontsize=legend_fontsize)
|
|
|
|
if save_path is not None:
|
|
fig.savefig(save_path, dpi=dpi, bbox_inches='tight')
|
|
print ('---- save figure {} into {}'.format(title, save_path))
|
|
plt.close(fig)
|
|
|
|
def print_log(print_string, log):
|
|
print("{}".format(print_string))
|
|
if log is not None:
|
|
log.write('{}\n'.format(print_string))
|
|
log.flush()
|
|
|
|
def time_file_str():
|
|
ISOTIMEFORMAT='%Y-%m-%d'
|
|
string = '{}'.format(time.strftime( ISOTIMEFORMAT, time.gmtime(time.time()) ))
|
|
return string + '-{}'.format(random.randint(1, 10000))
|
|
|
|
def time_string():
|
|
ISOTIMEFORMAT='%Y-%m-%d-%X'
|
|
string = '[{}]'.format(time.strftime( ISOTIMEFORMAT, time.gmtime(time.time()) ))
|
|
return string
|
|
|
|
def convert_secs2time(epoch_time, return_str=False):
|
|
need_hour = int(epoch_time / 3600)
|
|
need_mins = int((epoch_time - 3600*need_hour) / 60)
|
|
need_secs = int(epoch_time - 3600*need_hour - 60*need_mins)
|
|
if return_str == False:
|
|
return need_hour, need_mins, need_secs
|
|
else:
|
|
return '[Need: {:02d}:{:02d}:{:02d}]'.format(need_hour, need_mins, need_secs)
|
|
|
|
def test_imagenet_data(imagenet):
|
|
total_length = len(imagenet)
|
|
assert total_length == 1281166 or total_length == 50000, 'The length of ImageNet is wrong : {}'.format(total_length)
|
|
map_id = {}
|
|
for index in range(total_length):
|
|
path, target = imagenet.imgs[index]
|
|
folder, image_name = os.path.split(path)
|
|
_, folder = os.path.split(folder)
|
|
if folder not in map_id:
|
|
map_id[folder] = target
|
|
else:
|
|
assert map_id[folder] == target, 'Class : {} is not {}'.format(folder, target)
|
|
assert image_name.find(folder) == 0, '{} is wrong.'.format(path)
|
|
print ('Check ImageNet Dataset OK')
|