90 lines
2.7 KiB
Python
90 lines
2.7 KiB
Python
import torch
|
|
import torch.nn as nn
|
|
from .construct_utils import Cell, Transition
|
|
|
|
class AuxiliaryHeadCIFAR(nn.Module):
|
|
|
|
def __init__(self, C, num_classes):
|
|
"""assuming input size 8x8"""
|
|
super(AuxiliaryHeadCIFAR, self).__init__()
|
|
self.features = nn.Sequential(
|
|
nn.ReLU(inplace=True),
|
|
nn.AvgPool2d(5, stride=3, padding=0, count_include_pad=False), # image size = 2 x 2
|
|
nn.Conv2d(C, 128, 1, bias=False),
|
|
nn.BatchNorm2d(128),
|
|
nn.ReLU(inplace=True),
|
|
nn.Conv2d(128, 768, 2, bias=False),
|
|
nn.BatchNorm2d(768),
|
|
nn.ReLU(inplace=True)
|
|
)
|
|
self.classifier = nn.Linear(768, num_classes)
|
|
|
|
def forward(self, x):
|
|
x = self.features(x)
|
|
x = self.classifier(x.view(x.size(0),-1))
|
|
return x
|
|
|
|
|
|
class NetworkCIFAR(nn.Module):
|
|
|
|
def __init__(self, C, num_classes, layers, auxiliary, genotype):
|
|
super(NetworkCIFAR, self).__init__()
|
|
self._layers = layers
|
|
|
|
stem_multiplier = 3
|
|
C_curr = stem_multiplier*C
|
|
self.stem = nn.Sequential(
|
|
nn.Conv2d(3, C_curr, 3, padding=1, bias=False),
|
|
nn.BatchNorm2d(C_curr)
|
|
)
|
|
|
|
C_prev_prev, C_prev, C_curr = C_curr, C_curr, C
|
|
self.cells = nn.ModuleList()
|
|
reduction_prev = False
|
|
for i in range(layers):
|
|
if i in [layers//3, 2*layers//3]:
|
|
C_curr *= 2
|
|
reduction = True
|
|
else:
|
|
reduction = False
|
|
if reduction and genotype.reduce is None:
|
|
cell = Transition(C_prev_prev, C_prev, C_curr, reduction_prev)
|
|
else:
|
|
cell = Cell(genotype, C_prev_prev, C_prev, C_curr, reduction, reduction_prev)
|
|
reduction_prev = reduction
|
|
self.cells.append( cell )
|
|
C_prev_prev, C_prev = C_prev, cell.multiplier*C_curr
|
|
if i == 2*layers//3:
|
|
C_to_auxiliary = C_prev
|
|
|
|
if auxiliary:
|
|
self.auxiliary_head = AuxiliaryHeadCIFAR(C_to_auxiliary, num_classes)
|
|
else:
|
|
self.auxiliary_head = None
|
|
self.global_pooling = nn.AdaptiveAvgPool2d(1)
|
|
self.classifier = nn.Linear(C_prev, num_classes)
|
|
self.drop_path_prob = -1
|
|
|
|
def update_drop_path(self, drop_path_prob):
|
|
self.drop_path_prob = drop_path_prob
|
|
|
|
def auxiliary_param(self):
|
|
if self.auxiliary_head is None: return []
|
|
else: return list( self.auxiliary_head.parameters() )
|
|
|
|
def forward(self, inputs):
|
|
s0 = s1 = self.stem(inputs)
|
|
for i, cell in enumerate(self.cells):
|
|
s0, s1 = s1, cell(s0, s1, self.drop_path_prob)
|
|
if i == 2*self._layers//3:
|
|
if self.auxiliary_head and self.training:
|
|
logits_aux = self.auxiliary_head(s1)
|
|
out = self.global_pooling(s1)
|
|
out = out.view(out.size(0), -1)
|
|
logits = self.classifier(out)
|
|
|
|
if self.auxiliary_head and self.training:
|
|
return logits, logits_aux
|
|
else:
|
|
return logits
|