xautodl/exps/NATS-Bench/main-tss.py
2021-05-19 08:10:42 +00:00

697 lines
26 KiB
Python

##############################################################################
# NATS-Bench: Benchmarking NAS Algorithms for Architecture Topology and Size #
##############################################################################
# Copyright (c) Xuanyi Dong [GitHub D-X-Y], 2020.07 #
##############################################################################
# This file is used to train (all) architecture candidate in the topology #
# search space in NATS-Bench (tss) with different hyper-parameters. #
# When use mode=new, it will automatically detect whether the checkpoint of #
# a trial exists, if so, it will skip this trial. When use mode=cover, it #
# will ignore the (possible) existing checkpoint, run each trial, and save. #
##############################################################################
# Please use the script of scripts/NATS-Bench/train-topology.sh to run. #
# bash scripts/NATS-Bench/train-topology.sh 00000-15624 12 777 #
# bash scripts/NATS-Bench/train-topology.sh 00000-15624 200 '777 888 999' #
# #
################ #
# [Deprecated Function: Generate the meta information] #
# python ./exps/NATS-Bench/main-tss.py --mode meta #
##############################################################################
import os, sys, time, torch, random, argparse
from typing import List, Text, Dict, Any
from PIL import ImageFile
ImageFile.LOAD_TRUNCATED_IMAGES = True
from copy import deepcopy
from pathlib import Path
from xautodl.config_utils import dict2config, load_config
from xautodl.procedures import bench_evaluate_for_seed
from xautodl.procedures import get_machine_info
from xautodl.datasets import get_datasets
from xautodl.log_utils import Logger, AverageMeter, time_string, convert_secs2time
from xautodl.models import CellStructure, CellArchitectures, get_search_spaces
from xautodl.utils import split_str2indexes
def evaluate_all_datasets(
arch: Text,
datasets: List[Text],
xpaths: List[Text],
splits: List[Text],
config_path: Text,
seed: int,
raw_arch_config,
workers,
logger,
):
machine_info, raw_arch_config = get_machine_info(), deepcopy(raw_arch_config)
all_infos = {"info": machine_info}
all_dataset_keys = []
# look all the datasets
for dataset, xpath, split in zip(datasets, xpaths, splits):
# train valid data
train_data, valid_data, xshape, class_num = get_datasets(dataset, xpath, -1)
# load the configuration
if dataset == "cifar10" or dataset == "cifar100":
split_info = load_config(
"configs/nas-benchmark/cifar-split.txt", None, None
)
elif dataset.startswith("ImageNet16"):
split_info = load_config(
"configs/nas-benchmark/{:}-split.txt".format(dataset), None, None
)
else:
raise ValueError("invalid dataset : {:}".format(dataset))
config = load_config(
config_path, dict(class_num=class_num, xshape=xshape), logger
)
# check whether use splited validation set
if bool(split):
assert dataset == "cifar10"
ValLoaders = {
"ori-test": torch.utils.data.DataLoader(
valid_data,
batch_size=config.batch_size,
shuffle=False,
num_workers=workers,
pin_memory=True,
)
}
assert len(train_data) == len(split_info.train) + len(
split_info.valid
), "invalid length : {:} vs {:} + {:}".format(
len(train_data), len(split_info.train), len(split_info.valid)
)
train_data_v2 = deepcopy(train_data)
train_data_v2.transform = valid_data.transform
valid_data = train_data_v2
# data loader
train_loader = torch.utils.data.DataLoader(
train_data,
batch_size=config.batch_size,
sampler=torch.utils.data.sampler.SubsetRandomSampler(split_info.train),
num_workers=workers,
pin_memory=True,
)
valid_loader = torch.utils.data.DataLoader(
valid_data,
batch_size=config.batch_size,
sampler=torch.utils.data.sampler.SubsetRandomSampler(split_info.valid),
num_workers=workers,
pin_memory=True,
)
ValLoaders["x-valid"] = valid_loader
else:
# data loader
train_loader = torch.utils.data.DataLoader(
train_data,
batch_size=config.batch_size,
shuffle=True,
num_workers=workers,
pin_memory=True,
)
valid_loader = torch.utils.data.DataLoader(
valid_data,
batch_size=config.batch_size,
shuffle=False,
num_workers=workers,
pin_memory=True,
)
if dataset == "cifar10":
ValLoaders = {"ori-test": valid_loader}
elif dataset == "cifar100":
cifar100_splits = load_config(
"configs/nas-benchmark/cifar100-test-split.txt", None, None
)
ValLoaders = {
"ori-test": valid_loader,
"x-valid": torch.utils.data.DataLoader(
valid_data,
batch_size=config.batch_size,
sampler=torch.utils.data.sampler.SubsetRandomSampler(
cifar100_splits.xvalid
),
num_workers=workers,
pin_memory=True,
),
"x-test": torch.utils.data.DataLoader(
valid_data,
batch_size=config.batch_size,
sampler=torch.utils.data.sampler.SubsetRandomSampler(
cifar100_splits.xtest
),
num_workers=workers,
pin_memory=True,
),
}
elif dataset == "ImageNet16-120":
imagenet16_splits = load_config(
"configs/nas-benchmark/imagenet-16-120-test-split.txt", None, None
)
ValLoaders = {
"ori-test": valid_loader,
"x-valid": torch.utils.data.DataLoader(
valid_data,
batch_size=config.batch_size,
sampler=torch.utils.data.sampler.SubsetRandomSampler(
imagenet16_splits.xvalid
),
num_workers=workers,
pin_memory=True,
),
"x-test": torch.utils.data.DataLoader(
valid_data,
batch_size=config.batch_size,
sampler=torch.utils.data.sampler.SubsetRandomSampler(
imagenet16_splits.xtest
),
num_workers=workers,
pin_memory=True,
),
}
else:
raise ValueError("invalid dataset : {:}".format(dataset))
dataset_key = "{:}".format(dataset)
if bool(split):
dataset_key = dataset_key + "-valid"
logger.log(
"Evaluate ||||||| {:10s} ||||||| Train-Num={:}, Valid-Num={:}, Train-Loader-Num={:}, Valid-Loader-Num={:}, batch size={:}".format(
dataset_key,
len(train_data),
len(valid_data),
len(train_loader),
len(valid_loader),
config.batch_size,
)
)
logger.log(
"Evaluate ||||||| {:10s} ||||||| Config={:}".format(dataset_key, config)
)
for key, value in ValLoaders.items():
logger.log(
"Evaluate ---->>>> {:10s} with {:} batchs".format(key, len(value))
)
arch_config = dict2config(
dict(
name="infer.tiny",
C=raw_arch_config["channel"],
N=raw_arch_config["num_cells"],
genotype=arch,
num_classes=config.class_num,
),
None,
)
results = bench_evaluate_for_seed(
arch_config, config, train_loader, ValLoaders, seed, logger
)
all_infos[dataset_key] = results
all_dataset_keys.append(dataset_key)
all_infos["all_dataset_keys"] = all_dataset_keys
return all_infos
def main(
save_dir: Path,
workers: int,
datasets: List[Text],
xpaths: List[Text],
splits: List[int],
seeds: List[int],
nets: List[str],
opt_config: Dict[Text, Any],
to_evaluate_indexes: tuple,
cover_mode: bool,
arch_config: Dict[Text, Any],
):
log_dir = save_dir / "logs"
log_dir.mkdir(parents=True, exist_ok=True)
logger = Logger(str(log_dir), os.getpid(), False)
logger.log("xargs : seeds = {:}".format(seeds))
logger.log("xargs : cover_mode = {:}".format(cover_mode))
logger.log("-" * 100)
logger.log(
"Start evaluating range =: {:06d} - {:06d}".format(
min(to_evaluate_indexes), max(to_evaluate_indexes)
)
+ "({:} in total) / {:06d} with cover-mode={:}".format(
len(to_evaluate_indexes), len(nets), cover_mode
)
)
for i, (dataset, xpath, split) in enumerate(zip(datasets, xpaths, splits)):
logger.log(
"--->>> Evaluate {:}/{:} : dataset={:9s}, path={:}, split={:}".format(
i, len(datasets), dataset, xpath, split
)
)
logger.log("--->>> optimization config : {:}".format(opt_config))
start_time, epoch_time = time.time(), AverageMeter()
for i, index in enumerate(to_evaluate_indexes):
arch = nets[index]
logger.log(
"\n{:} evaluate {:06d}/{:06d} ({:06d}/{:06d})-th arch [seeds={:}] {:}".format(
time_string(),
i,
len(to_evaluate_indexes),
index,
len(nets),
seeds,
"-" * 15,
)
)
logger.log("{:} {:} {:}".format("-" * 15, arch, "-" * 15))
# test this arch on different datasets with different seeds
has_continue = False
for seed in seeds:
to_save_name = save_dir / "arch-{:06d}-seed-{:04d}.pth".format(index, seed)
if to_save_name.exists():
if cover_mode:
logger.log(
"Find existing file : {:}, remove it before evaluation".format(
to_save_name
)
)
os.remove(str(to_save_name))
else:
logger.log(
"Find existing file : {:}, skip this evaluation".format(
to_save_name
)
)
has_continue = True
continue
results = evaluate_all_datasets(
CellStructure.str2structure(arch),
datasets,
xpaths,
splits,
opt_config,
seed,
arch_config,
workers,
logger,
)
torch.save(results, to_save_name)
logger.log(
"\n{:} evaluate {:06d}/{:06d} ({:06d}/{:06d})-th arch [seeds={:}] ===>>> {:}".format(
time_string(),
i,
len(to_evaluate_indexes),
index,
len(nets),
seeds,
to_save_name,
)
)
# measure elapsed time
if not has_continue:
epoch_time.update(time.time() - start_time)
start_time = time.time()
need_time = "Time Left: {:}".format(
convert_secs2time(epoch_time.avg * (len(to_evaluate_indexes) - i - 1), True)
)
logger.log(
"This arch costs : {:}".format(convert_secs2time(epoch_time.val, True))
)
logger.log("{:}".format("*" * 100))
logger.log(
"{:} {:74s} {:}".format(
"*" * 10,
"{:06d}/{:06d} ({:06d}/{:06d})-th done, left {:}".format(
i, len(to_evaluate_indexes), index, len(nets), need_time
),
"*" * 10,
)
)
logger.log("{:}".format("*" * 100))
logger.close()
def train_single_model(
save_dir, workers, datasets, xpaths, splits, use_less, seeds, model_str, arch_config
):
assert torch.cuda.is_available(), "CUDA is not available."
torch.backends.cudnn.enabled = True
torch.backends.cudnn.deterministic = True
# torch.backends.cudnn.benchmark = True
# torch.set_num_threads(workers)
save_dir = (
Path(save_dir)
/ "specifics"
/ "{:}-{:}-{:}-{:}".format(
"LESS" if use_less else "FULL",
model_str,
arch_config["channel"],
arch_config["num_cells"],
)
)
logger = Logger(str(save_dir), 0, False)
if model_str in CellArchitectures:
arch = CellArchitectures[model_str]
logger.log(
"The model string is found in pre-defined architecture dict : {:}".format(
model_str
)
)
else:
try:
arch = CellStructure.str2structure(model_str)
except:
raise ValueError(
"Invalid model string : {:}. It can not be found or parsed.".format(
model_str
)
)
assert arch.check_valid_op(
get_search_spaces("cell", "full")
), "{:} has the invalid op.".format(arch)
logger.log("Start train-evaluate {:}".format(arch.tostr()))
logger.log("arch_config : {:}".format(arch_config))
start_time, seed_time = time.time(), AverageMeter()
for _is, seed in enumerate(seeds):
logger.log(
"\nThe {:02d}/{:02d}-th seed is {:} ----------------------<.>----------------------".format(
_is, len(seeds), seed
)
)
to_save_name = save_dir / "seed-{:04d}.pth".format(seed)
if to_save_name.exists():
logger.log(
"Find the existing file {:}, directly load!".format(to_save_name)
)
checkpoint = torch.load(to_save_name)
else:
logger.log(
"Does not find the existing file {:}, train and evaluate!".format(
to_save_name
)
)
checkpoint = evaluate_all_datasets(
arch,
datasets,
xpaths,
splits,
use_less,
seed,
arch_config,
workers,
logger,
)
torch.save(checkpoint, to_save_name)
# log information
logger.log("{:}".format(checkpoint["info"]))
all_dataset_keys = checkpoint["all_dataset_keys"]
for dataset_key in all_dataset_keys:
logger.log(
"\n{:} dataset : {:} {:}".format("-" * 15, dataset_key, "-" * 15)
)
dataset_info = checkpoint[dataset_key]
# logger.log('Network ==>\n{:}'.format( dataset_info['net_string'] ))
logger.log(
"Flops = {:} MB, Params = {:} MB".format(
dataset_info["flop"], dataset_info["param"]
)
)
logger.log("config : {:}".format(dataset_info["config"]))
logger.log(
"Training State (finish) = {:}".format(dataset_info["finish-train"])
)
last_epoch = dataset_info["total_epoch"] - 1
train_acc1es, train_acc5es = (
dataset_info["train_acc1es"],
dataset_info["train_acc5es"],
)
valid_acc1es, valid_acc5es = (
dataset_info["valid_acc1es"],
dataset_info["valid_acc5es"],
)
logger.log(
"Last Info : Train = Acc@1 {:.2f}% Acc@5 {:.2f}% Error@1 {:.2f}%, Test = Acc@1 {:.2f}% Acc@5 {:.2f}% Error@1 {:.2f}%".format(
train_acc1es[last_epoch],
train_acc5es[last_epoch],
100 - train_acc1es[last_epoch],
valid_acc1es[last_epoch],
valid_acc5es[last_epoch],
100 - valid_acc1es[last_epoch],
)
)
# measure elapsed time
seed_time.update(time.time() - start_time)
start_time = time.time()
need_time = "Time Left: {:}".format(
convert_secs2time(seed_time.avg * (len(seeds) - _is - 1), True)
)
logger.log(
"\n<<<***>>> The {:02d}/{:02d}-th seed is {:} <finish> other procedures need {:}".format(
_is, len(seeds), seed, need_time
)
)
logger.close()
def generate_meta_info(save_dir, max_node, divide=40):
aa_nas_bench_ss = get_search_spaces("cell", "nas-bench-201")
archs = CellStructure.gen_all(aa_nas_bench_ss, max_node, False)
print(
"There are {:} archs vs {:}.".format(
len(archs), len(aa_nas_bench_ss) ** ((max_node - 1) * max_node / 2)
)
)
random.seed(88) # please do not change this line for reproducibility
random.shuffle(archs)
# to test fixed-random shuffle
# print ('arch [0] : {:}\n---->>>> {:}'.format( archs[0], archs[0].tostr() ))
# print ('arch [9] : {:}\n---->>>> {:}'.format( archs[9], archs[9].tostr() ))
assert (
archs[0].tostr()
== "|avg_pool_3x3~0|+|nor_conv_1x1~0|skip_connect~1|+|nor_conv_1x1~0|skip_connect~1|skip_connect~2|"
), "please check the 0-th architecture : {:}".format(archs[0])
assert (
archs[9].tostr()
== "|avg_pool_3x3~0|+|none~0|none~1|+|skip_connect~0|none~1|nor_conv_3x3~2|"
), "please check the 9-th architecture : {:}".format(archs[9])
assert (
archs[123].tostr()
== "|avg_pool_3x3~0|+|avg_pool_3x3~0|nor_conv_1x1~1|+|none~0|avg_pool_3x3~1|nor_conv_3x3~2|"
), "please check the 123-th architecture : {:}".format(archs[123])
total_arch = len(archs)
num = 50000
indexes_5W = list(range(num))
random.seed(1021)
random.shuffle(indexes_5W)
train_split = sorted(list(set(indexes_5W[: num // 2])))
valid_split = sorted(list(set(indexes_5W[num // 2 :])))
assert len(train_split) + len(valid_split) == num
assert (
train_split[0] == 0
and train_split[10] == 26
and train_split[111] == 203
and valid_split[0] == 1
and valid_split[10] == 18
and valid_split[111] == 242
), "{:} {:} {:} - {:} {:} {:}".format(
train_split[0],
train_split[10],
train_split[111],
valid_split[0],
valid_split[10],
valid_split[111],
)
splits = {num: {"train": train_split, "valid": valid_split}}
info = {
"archs": [x.tostr() for x in archs],
"total": total_arch,
"max_node": max_node,
"splits": splits,
}
save_dir = Path(save_dir)
save_dir.mkdir(parents=True, exist_ok=True)
save_name = save_dir / "meta-node-{:}.pth".format(max_node)
assert not save_name.exists(), "{:} already exist".format(save_name)
torch.save(info, save_name)
print("save the meta file into {:}".format(save_name))
def traverse_net(max_node):
aa_nas_bench_ss = get_search_spaces("cell", "nats-bench")
archs = CellStructure.gen_all(aa_nas_bench_ss, max_node, False)
print(
"There are {:} archs vs {:}.".format(
len(archs), len(aa_nas_bench_ss) ** ((max_node - 1) * max_node / 2)
)
)
random.seed(88) # please do not change this line for reproducibility
random.shuffle(archs)
assert (
archs[0].tostr()
== "|avg_pool_3x3~0|+|nor_conv_1x1~0|skip_connect~1|+|nor_conv_1x1~0|skip_connect~1|skip_connect~2|"
), "please check the 0-th architecture : {:}".format(archs[0])
assert (
archs[9].tostr()
== "|avg_pool_3x3~0|+|none~0|none~1|+|skip_connect~0|none~1|nor_conv_3x3~2|"
), "please check the 9-th architecture : {:}".format(archs[9])
assert (
archs[123].tostr()
== "|avg_pool_3x3~0|+|avg_pool_3x3~0|nor_conv_1x1~1|+|none~0|avg_pool_3x3~1|nor_conv_3x3~2|"
), "please check the 123-th architecture : {:}".format(archs[123])
return [x.tostr() for x in archs]
def filter_indexes(xlist, mode, save_dir, seeds):
all_indexes = []
for index in xlist:
if mode == "cover":
all_indexes.append(index)
else:
for seed in seeds:
temp_path = save_dir / "arch-{:06d}-seed-{:04d}.pth".format(index, seed)
if not temp_path.exists():
all_indexes.append(index)
break
print(
"{:} [FILTER-INDEXES] : there are {:}/{:} architectures in total".format(
time_string(), len(all_indexes), len(xlist)
)
)
return all_indexes
if __name__ == "__main__":
# mode_choices = ['meta', 'new', 'cover'] + ['specific-{:}'.format(_) for _ in CellArchitectures.keys()]
parser = argparse.ArgumentParser(
description="NATS-Bench (topology search space)",
formatter_class=argparse.ArgumentDefaultsHelpFormatter,
)
parser.add_argument("--mode", type=str, required=True, help="The script mode.")
parser.add_argument(
"--save_dir",
type=str,
default="output/NATS-Bench-topology",
help="Folder to save checkpoints and log.",
)
parser.add_argument(
"--max_node",
type=int,
default=4,
help="The maximum node in a cell (please do not change it).",
)
# use for train the model
parser.add_argument(
"--workers",
type=int,
default=8,
help="number of data loading workers (default: 2)",
)
parser.add_argument(
"--srange", type=str, required=True, help="The range of models to be evaluated"
)
parser.add_argument("--datasets", type=str, nargs="+", help="The applied datasets.")
parser.add_argument(
"--xpaths", type=str, nargs="+", help="The root path for this dataset."
)
parser.add_argument(
"--splits", type=int, nargs="+", help="The root path for this dataset."
)
parser.add_argument(
"--hyper",
type=str,
default="12",
choices=["01", "12", "200"],
help="The tag for hyper-parameters.",
)
parser.add_argument(
"--seeds", type=int, nargs="+", help="The range of models to be evaluated"
)
parser.add_argument(
"--channel", type=int, default=16, help="The number of channels."
)
parser.add_argument(
"--num_cells", type=int, default=5, help="The number of cells in one stage."
)
parser.add_argument("--check_N", type=int, default=15625, help="For safety.")
args = parser.parse_args()
assert args.mode in ["meta", "new", "cover"] or args.mode.startswith(
"specific-"
), "invalid mode : {:}".format(args.mode)
if args.mode == "meta":
generate_meta_info(args.save_dir, args.max_node)
elif args.mode.startswith("specific"):
assert len(args.mode.split("-")) == 2, "invalid mode : {:}".format(args.mode)
model_str = args.mode.split("-")[1]
train_single_model(
args.save_dir,
args.workers,
args.datasets,
args.xpaths,
args.splits,
args.use_less > 0,
tuple(args.seeds),
model_str,
{"channel": args.channel, "num_cells": args.num_cells},
)
else:
nets = traverse_net(args.max_node)
if len(nets) != args.check_N:
raise ValueError(
"Pre-num-check failed : {:} vs {:}".format(len(nets), args.check_N)
)
opt_config = "./configs/nas-benchmark/hyper-opts/{:}E.config".format(args.hyper)
if not os.path.isfile(opt_config):
raise ValueError("{:} is not a file.".format(opt_config))
save_dir = Path(args.save_dir) / "raw-data-{:}".format(args.hyper)
save_dir.mkdir(parents=True, exist_ok=True)
to_evaluate_indexes = split_str2indexes(args.srange, args.check_N, 5)
if not len(args.seeds):
raise ValueError("invalid length of seeds args: {:}".format(args.seeds))
if not (len(args.datasets) == len(args.xpaths) == len(args.splits)):
raise ValueError(
"invalid infos : {:} vs {:} vs {:}".format(
len(args.datasets), len(args.xpaths), len(args.splits)
)
)
if args.workers < 0:
raise ValueError("invalid number of workers : {:}".format(args.workers))
target_indexes = filter_indexes(
to_evaluate_indexes, args.mode, save_dir, args.seeds
)
assert torch.cuda.is_available(), "CUDA is not available."
torch.backends.cudnn.enabled = True
torch.backends.cudnn.deterministic = True
# torch.set_num_threads(args.workers if args.workers > 0 else 1)
main(
save_dir,
args.workers,
args.datasets,
args.xpaths,
args.splits,
tuple(args.seeds),
nets,
opt_config,
target_indexes,
args.mode == "cover",
{
"name": "infer.tiny",
"channel": args.channel,
"num_cells": args.num_cells,
},
)