282 lines
15 KiB
Python
282 lines
15 KiB
Python
##################################################
|
|
# Copyright (c) Xuanyi Dong [GitHub D-X-Y], 2019 #
|
|
##################################################
|
|
# One-Shot Neural Architecture Search via Self-Evaluated Template Network, ICCV 2019
|
|
##################################################
|
|
import os, sys, time, glob, random, argparse
|
|
import numpy as np
|
|
from copy import deepcopy
|
|
import torch
|
|
import torch.nn as nn
|
|
from pathlib import Path
|
|
lib_dir = (Path(__file__).parent / '..' / '..' / 'lib').resolve()
|
|
if str(lib_dir) not in sys.path: sys.path.insert(0, str(lib_dir))
|
|
from config_utils import load_config, dict2config, configure2str
|
|
from datasets import get_datasets, SearchDataset
|
|
from procedures import prepare_seed, prepare_logger, save_checkpoint, copy_checkpoint, get_optim_scheduler
|
|
from utils import get_model_infos, obtain_accuracy
|
|
from log_utils import AverageMeter, time_string, convert_secs2time
|
|
from models import get_cell_based_tiny_net, get_search_spaces
|
|
|
|
|
|
def search_func(xloader, network, criterion, scheduler, w_optimizer, a_optimizer, epoch_str, print_freq, logger):
|
|
data_time, batch_time = AverageMeter(), AverageMeter()
|
|
base_losses, base_top1, base_top5 = AverageMeter(), AverageMeter(), AverageMeter()
|
|
arch_losses, arch_top1, arch_top5 = AverageMeter(), AverageMeter(), AverageMeter()
|
|
network.train()
|
|
end = time.time()
|
|
for step, (base_inputs, base_targets, arch_inputs, arch_targets) in enumerate(xloader):
|
|
scheduler.update(None, 1.0 * step / len(xloader))
|
|
base_targets = base_targets.cuda(non_blocking=True)
|
|
arch_targets = arch_targets.cuda(non_blocking=True)
|
|
# measure data loading time
|
|
data_time.update(time.time() - end)
|
|
|
|
# update the weights
|
|
network.module.set_cal_mode( 'urs' )
|
|
w_optimizer.zero_grad()
|
|
_, logits = network(base_inputs)
|
|
base_loss = criterion(logits, base_targets)
|
|
base_loss.backward()
|
|
w_optimizer.step()
|
|
# record
|
|
base_prec1, base_prec5 = obtain_accuracy(logits.data, base_targets.data, topk=(1, 5))
|
|
base_losses.update(base_loss.item(), base_inputs.size(0))
|
|
base_top1.update (base_prec1.item(), base_inputs.size(0))
|
|
base_top5.update (base_prec5.item(), base_inputs.size(0))
|
|
|
|
# update the architecture-weight
|
|
network.module.set_cal_mode( 'joint' )
|
|
a_optimizer.zero_grad()
|
|
_, logits = network(arch_inputs)
|
|
arch_loss = criterion(logits, arch_targets)
|
|
arch_loss.backward()
|
|
a_optimizer.step()
|
|
# record
|
|
arch_prec1, arch_prec5 = obtain_accuracy(logits.data, arch_targets.data, topk=(1, 5))
|
|
arch_losses.update(arch_loss.item(), arch_inputs.size(0))
|
|
arch_top1.update (arch_prec1.item(), arch_inputs.size(0))
|
|
arch_top5.update (arch_prec5.item(), arch_inputs.size(0))
|
|
|
|
# measure elapsed time
|
|
batch_time.update(time.time() - end)
|
|
end = time.time()
|
|
|
|
if step % print_freq == 0 or step + 1 == len(xloader):
|
|
Sstr = '*SEARCH* ' + time_string() + ' [{:}][{:03d}/{:03d}]'.format(epoch_str, step, len(xloader))
|
|
Tstr = 'Time {batch_time.val:.2f} ({batch_time.avg:.2f}) Data {data_time.val:.2f} ({data_time.avg:.2f})'.format(batch_time=batch_time, data_time=data_time)
|
|
Wstr = 'Base [Loss {loss.val:.3f} ({loss.avg:.3f}) Prec@1 {top1.val:.2f} ({top1.avg:.2f}) Prec@5 {top5.val:.2f} ({top5.avg:.2f})]'.format(loss=base_losses, top1=base_top1, top5=base_top5)
|
|
Astr = 'Arch [Loss {loss.val:.3f} ({loss.avg:.3f}) Prec@1 {top1.val:.2f} ({top1.avg:.2f}) Prec@5 {top5.val:.2f} ({top5.avg:.2f})]'.format(loss=arch_losses, top1=arch_top1, top5=arch_top5)
|
|
logger.log(Sstr + ' ' + Tstr + ' ' + Wstr + ' ' + Astr)
|
|
return base_losses.avg, base_top1.avg, base_top5.avg
|
|
|
|
|
|
def valid_func(xloader, network, criterion):
|
|
data_time, batch_time = AverageMeter(), AverageMeter()
|
|
arch_losses, arch_top1, arch_top5 = AverageMeter(), AverageMeter(), AverageMeter()
|
|
network.train()
|
|
end = time.time()
|
|
with torch.no_grad():
|
|
for step, (arch_inputs, arch_targets) in enumerate(xloader):
|
|
arch_targets = arch_targets.cuda(non_blocking=True)
|
|
# measure data loading time
|
|
data_time.update(time.time() - end)
|
|
# prediction
|
|
_, logits = network(arch_inputs)
|
|
arch_loss = criterion(logits, arch_targets)
|
|
# record
|
|
arch_prec1, arch_prec5 = obtain_accuracy(logits.data, arch_targets.data, topk=(1, 5))
|
|
arch_losses.update(arch_loss.item(), arch_inputs.size(0))
|
|
arch_top1.update (arch_prec1.item(), arch_inputs.size(0))
|
|
arch_top5.update (arch_prec5.item(), arch_inputs.size(0))
|
|
# measure elapsed time
|
|
batch_time.update(time.time() - end)
|
|
end = time.time()
|
|
return arch_losses.avg, arch_top1.avg, arch_top5.avg
|
|
|
|
|
|
def main(xargs):
|
|
assert torch.cuda.is_available(), 'CUDA is not available.'
|
|
torch.backends.cudnn.enabled = True
|
|
torch.backends.cudnn.benchmark = False
|
|
torch.backends.cudnn.deterministic = True
|
|
torch.set_num_threads( xargs.workers )
|
|
prepare_seed(xargs.rand_seed)
|
|
logger = prepare_logger(args)
|
|
|
|
train_data, valid_data, xshape, class_num = get_datasets(xargs.dataset, xargs.data_path, -1)
|
|
if xargs.dataset == 'cifar10' or xargs.dataset == 'cifar100':
|
|
split_Fpath = 'configs/nas-benchmark/cifar-split.txt'
|
|
cifar_split = load_config(split_Fpath, None, None)
|
|
train_split, valid_split = cifar_split.train, cifar_split.valid
|
|
logger.log('Load split file from {:}'.format(split_Fpath))
|
|
elif xargs.dataset.startswith('ImageNet16'):
|
|
split_Fpath = 'configs/nas-benchmark/{:}-split.txt'.format(xargs.dataset)
|
|
imagenet16_split = load_config(split_Fpath, None, None)
|
|
train_split, valid_split = imagenet16_split.train, imagenet16_split.valid
|
|
logger.log('Load split file from {:}'.format(split_Fpath))
|
|
else:
|
|
raise ValueError('invalid dataset : {:}'.format(xargs.dataset))
|
|
config_path = 'configs/nas-benchmark/algos/SETN.config'
|
|
config = load_config(config_path, {'class_num': class_num, 'xshape': xshape}, logger)
|
|
# To split data
|
|
train_data_v2 = deepcopy(train_data)
|
|
train_data_v2.transform = valid_data.transform
|
|
valid_data = train_data_v2
|
|
search_data = SearchDataset(xargs.dataset, train_data, train_split, valid_split)
|
|
# data loader
|
|
search_loader = torch.utils.data.DataLoader(search_data, batch_size=config.batch_size, shuffle=True , num_workers=xargs.workers, pin_memory=True)
|
|
valid_loader = torch.utils.data.DataLoader(valid_data, batch_size=config.batch_size, sampler=torch.utils.data.sampler.SubsetRandomSampler(valid_split), num_workers=xargs.workers, pin_memory=True)
|
|
logger.log('||||||| {:10s} ||||||| Search-Loader-Num={:}, Valid-Loader-Num={:}, batch size={:}'.format(xargs.dataset, len(search_loader), len(valid_loader), config.batch_size))
|
|
logger.log('||||||| {:10s} ||||||| Config={:}'.format(xargs.dataset, config))
|
|
|
|
search_space = get_search_spaces('cell', xargs.search_space_name)
|
|
model_config = dict2config({'name': 'SETN', 'C': xargs.channel, 'N': xargs.num_cells,
|
|
'max_nodes': xargs.max_nodes, 'num_classes': class_num,
|
|
'space' : search_space}, None)
|
|
search_model = get_cell_based_tiny_net(model_config)
|
|
|
|
w_optimizer, w_scheduler, criterion = get_optim_scheduler(search_model.get_weights(), config)
|
|
a_optimizer = torch.optim.Adam(search_model.get_alphas(), lr=xargs.arch_learning_rate, betas=(0.5, 0.999), weight_decay=xargs.arch_weight_decay)
|
|
logger.log('w-optimizer : {:}'.format(w_optimizer))
|
|
logger.log('a-optimizer : {:}'.format(a_optimizer))
|
|
logger.log('w-scheduler : {:}'.format(w_scheduler))
|
|
logger.log('criterion : {:}'.format(criterion))
|
|
flop, param = get_model_infos(search_model, xshape)
|
|
#logger.log('{:}'.format(search_model))
|
|
logger.log('FLOP = {:.2f} M, Params = {:.2f} MB'.format(flop, param))
|
|
|
|
last_info, model_base_path, model_best_path = logger.path('info'), logger.path('model'), logger.path('best')
|
|
network, criterion = torch.nn.DataParallel(search_model).cuda(), criterion.cuda()
|
|
|
|
if last_info.exists(): # automatically resume from previous checkpoint
|
|
logger.log("=> loading checkpoint of the last-info '{:}' start".format(last_info))
|
|
last_info = torch.load(last_info)
|
|
start_epoch = last_info['epoch']
|
|
checkpoint = torch.load(last_info['last_checkpoint'])
|
|
genotypes = checkpoint['genotypes']
|
|
valid_accuracies = checkpoint['valid_accuracies']
|
|
search_model.load_state_dict( checkpoint['search_model'] )
|
|
w_scheduler.load_state_dict ( checkpoint['w_scheduler'] )
|
|
w_optimizer.load_state_dict ( checkpoint['w_optimizer'] )
|
|
a_optimizer.load_state_dict ( checkpoint['a_optimizer'] )
|
|
logger.log("=> loading checkpoint of the last-info '{:}' start with {:}-th epoch.".format(last_info, start_epoch))
|
|
else:
|
|
logger.log("=> do not find the last-info file : {:}".format(last_info))
|
|
start_epoch, valid_accuracies, genotypes = 0, {'best': -1}, {}
|
|
|
|
# start training
|
|
start_time, epoch_time, total_epoch = time.time(), AverageMeter(), config.epochs + config.warmup
|
|
for epoch in range(start_epoch, total_epoch):
|
|
w_scheduler.update(epoch, 0.0)
|
|
need_time = 'Time Left: {:}'.format( convert_secs2time(epoch_time.val * (total_epoch-epoch), True) )
|
|
epoch_str = '{:03d}-{:03d}'.format(epoch, total_epoch)
|
|
logger.log('\n[Search the {:}-th epoch] {:}, LR={:}'.format(epoch_str, need_time, min(w_scheduler.get_lr())))
|
|
|
|
search_w_loss, search_w_top1, search_w_top5 = search_func(search_loader, network, criterion, w_scheduler, w_optimizer, a_optimizer, epoch_str, xargs.print_freq, logger)
|
|
logger.log('[{:}] searching : loss={:.2f}, accuracy@1={:.2f}%, accuracy@5={:.2f}%'.format(epoch_str, search_w_loss, search_w_top1, search_w_top5))
|
|
search_model.set_cal_mode('urs')
|
|
valid_a_loss , valid_a_top1 , valid_a_top5 = valid_func(valid_loader, network, criterion)
|
|
logger.log('[{:}] URS---evaluate : loss={:.2f}, accuracy@1={:.2f}%, accuracy@5={:.2f}%'.format(epoch_str, valid_a_loss, valid_a_top1, valid_a_top5))
|
|
search_model.set_cal_mode('joint')
|
|
valid_a_loss , valid_a_top1 , valid_a_top5 = valid_func(valid_loader, network, criterion)
|
|
logger.log('[{:}] JOINT-evaluate : loss={:.2f}, accuracy@1={:.2f}%, accuracy@5={:.2f}%'.format(epoch_str, valid_a_loss, valid_a_top1, valid_a_top5))
|
|
search_model.set_cal_mode('select')
|
|
valid_a_loss , valid_a_top1 , valid_a_top5 = valid_func(valid_loader, network, criterion)
|
|
logger.log('[{:}] Selec-evaluate : loss={:.2f}, accuracy@1={:.2f}%, accuracy@5={:.2f}%'.format(epoch_str, valid_a_loss, valid_a_top1, valid_a_top5))
|
|
# check the best accuracy
|
|
valid_accuracies[epoch] = valid_a_top1
|
|
if valid_a_top1 > valid_accuracies['best']:
|
|
valid_accuracies['best'] = valid_a_top1
|
|
genotypes['best'] = search_model.genotype()
|
|
find_best = True
|
|
else: find_best = False
|
|
|
|
genotypes[epoch] = search_model.genotype()
|
|
logger.log('<<<--->>> The {:}-th epoch : {:}'.format(epoch_str, genotypes[epoch]))
|
|
# save checkpoint
|
|
save_path = save_checkpoint({'epoch' : epoch + 1,
|
|
'args' : deepcopy(xargs),
|
|
'search_model': search_model.state_dict(),
|
|
'w_optimizer' : w_optimizer.state_dict(),
|
|
'a_optimizer' : a_optimizer.state_dict(),
|
|
'w_scheduler' : w_scheduler.state_dict(),
|
|
'genotypes' : genotypes,
|
|
'valid_accuracies' : valid_accuracies},
|
|
model_base_path, logger)
|
|
last_info = save_checkpoint({
|
|
'epoch': epoch + 1,
|
|
'args' : deepcopy(args),
|
|
'last_checkpoint': save_path,
|
|
}, logger.path('info'), logger)
|
|
if find_best:
|
|
logger.log('<<<--->>> The {:}-th epoch : find the highest validation accuracy : {:.2f}%.'.format(epoch_str, valid_a_top1))
|
|
copy_checkpoint(model_base_path, model_best_path, logger)
|
|
with torch.no_grad():
|
|
logger.log('arch-parameters :\n{:}'.format( nn.functional.softmax(search_model.arch_parameters, dim=-1).cpu() ))
|
|
# measure elapsed time
|
|
epoch_time.update(time.time() - start_time)
|
|
start_time = time.time()
|
|
|
|
# sampling
|
|
with torch.no_grad():
|
|
logger.log('arch-parameters :\n{:}'.format( nn.functional.softmax(search_model.arch_parameters, dim=-1).cpu() ))
|
|
selected_archs = set()
|
|
while len(selected_archs) < xargs.select_num:
|
|
architecture = search_model.dync_genotype()
|
|
selected_archs.add( architecture )
|
|
logger.log('select {:} architectures based on the learned arch-parameters'.format( len(selected_archs) ))
|
|
|
|
best_arch, best_acc = None, -1
|
|
state_dict = deepcopy( network.state_dict() )
|
|
for index, arch in enumerate(selected_archs):
|
|
with torch.no_grad():
|
|
search_model.set_cal_mode('dynamic', arch)
|
|
network.load_state_dict( deepcopy(state_dict) )
|
|
valid_a_loss , valid_a_top1 , valid_a_top5 = valid_func(valid_loader, network, criterion)
|
|
logger.log('{:} [{:03d}/{:03d}] : {:125s}, loss={:.3f}, accuracy={:.3f}%'.format(time_string(), index, len(selected_archs), str(arch), valid_a_loss , valid_a_top1))
|
|
if best_arch is None or best_acc < valid_a_top1:
|
|
best_arch, best_acc = arch, valid_a_top1
|
|
logger.log('Find the best one : {:} with accuracy={:.2f}%'.format(best_arch, best_acc))
|
|
|
|
logger.log('\n' + '-'*100)
|
|
# check the performance from the architecture dataset
|
|
"""
|
|
if xargs.arch_nas_dataset is None or not os.path.isfile(xargs.arch_nas_dataset):
|
|
logger.log('Can not find the architecture dataset : {:}.'.format(xargs.arch_nas_dataset))
|
|
else:
|
|
nas_bench = TinyNASBenchmarkAPI(xargs.arch_nas_dataset)
|
|
geno = best_arch
|
|
logger.log('The last model is {:}'.format(geno))
|
|
info = nas_bench.query_by_arch( geno )
|
|
if info is None: logger.log('Did not find this architecture : {:}.'.format(geno))
|
|
else : logger.log('{:}'.format(info))
|
|
logger.log('-'*100)
|
|
"""
|
|
logger.close()
|
|
|
|
|
|
|
|
if __name__ == '__main__':
|
|
parser = argparse.ArgumentParser("SETN")
|
|
parser.add_argument('--data_path', type=str, help='Path to dataset')
|
|
parser.add_argument('--dataset', type=str, choices=['cifar10', 'cifar100', 'ImageNet16-120'], help='Choose between Cifar10/100 and ImageNet-16.')
|
|
# channels and number-of-cells
|
|
parser.add_argument('--search_space_name', type=str, help='The search space name.')
|
|
parser.add_argument('--max_nodes', type=int, help='The maximum number of nodes.')
|
|
parser.add_argument('--channel', type=int, help='The number of channels.')
|
|
parser.add_argument('--num_cells', type=int, help='The number of cells in one stage.')
|
|
parser.add_argument('--select_num', type=int, help='The number of selected architectures to evaluate.')
|
|
# architecture leraning rate
|
|
parser.add_argument('--arch_learning_rate', type=float, default=3e-4, help='learning rate for arch encoding')
|
|
parser.add_argument('--arch_weight_decay', type=float, default=1e-3, help='weight decay for arch encoding')
|
|
# log
|
|
parser.add_argument('--workers', type=int, default=2, help='number of data loading workers (default: 2)')
|
|
parser.add_argument('--save_dir', type=str, help='Folder to save checkpoints and log.')
|
|
parser.add_argument('--arch_nas_dataset', type=str, help='The path to load the architecture dataset (tiny-nas-benchmark).')
|
|
parser.add_argument('--print_freq', type=int, help='print frequency (default: 200)')
|
|
parser.add_argument('--rand_seed', type=int, help='manual seed')
|
|
args = parser.parse_args()
|
|
if args.rand_seed is None or args.rand_seed < 0: args.rand_seed = random.randint(1, 100000)
|
|
main(args)
|