73 lines
2.4 KiB
Python
73 lines
2.4 KiB
Python
#####################################################
|
|
# Copyright (c) Xuanyi Dong [GitHub D-X-Y], 2021.04 #
|
|
#####################################################
|
|
import copy
|
|
import torch
|
|
|
|
import torch.nn.functional as F
|
|
|
|
from xlayers import super_core
|
|
from xlayers import trunc_normal_
|
|
from models.xcore import get_model
|
|
|
|
|
|
class HyperNet(super_core.SuperModule):
|
|
"""The hyper-network."""
|
|
|
|
def __init__(
|
|
self,
|
|
shape_container,
|
|
layer_embeding,
|
|
task_embedding,
|
|
meta_timestamps,
|
|
return_container: bool = True,
|
|
):
|
|
super(HyperNet, self).__init__()
|
|
self._shape_container = shape_container
|
|
self._num_layers = len(shape_container)
|
|
self._numel_per_layer = []
|
|
for ilayer in range(self._num_layers):
|
|
self._numel_per_layer.append(shape_container[ilayer].numel())
|
|
|
|
self.register_parameter(
|
|
"_super_layer_embed",
|
|
torch.nn.Parameter(torch.Tensor(self._num_layers, layer_embeding)),
|
|
)
|
|
trunc_normal_(self._super_layer_embed, std=0.02)
|
|
|
|
model_kwargs = dict(
|
|
config=dict(model_type="dual_norm_mlp"),
|
|
input_dim=layer_embeding + task_embedding,
|
|
output_dim=max(self._numel_per_layer),
|
|
hidden_dims=[(layer_embeding + task_embedding) * 2] * 3,
|
|
act_cls="gelu",
|
|
norm_cls="layer_norm_1d",
|
|
dropout=0.2,
|
|
)
|
|
import pdb
|
|
|
|
pdb.set_trace()
|
|
self._generator = get_model(**model_kwargs)
|
|
self._return_container = return_container
|
|
print("generator: {:}".format(self._generator))
|
|
|
|
def forward_raw(self, task_embed):
|
|
# task_embed = F.normalize(task_embed, dim=-1, p=2)
|
|
# layer_embed = F.normalize(self._super_layer_embed, dim=-1, p=2)
|
|
layer_embed = self._super_layer_embed
|
|
task_embed = task_embed.view(1, -1).expand(self._num_layers, -1)
|
|
|
|
joint_embed = torch.cat((task_embed, layer_embed), dim=-1)
|
|
weights = self._generator(joint_embed)
|
|
if self._return_container:
|
|
weights = torch.split(weights, 1)
|
|
return self._shape_container.translate(weights)
|
|
else:
|
|
return weights
|
|
|
|
def forward_candidate(self, input):
|
|
raise NotImplementedError
|
|
|
|
def extra_repr(self) -> str:
|
|
return "(_super_layer_embed): {:}".format(list(self._super_layer_embed.shape))
|