416 lines
21 KiB
Python
416 lines
21 KiB
Python
###############################################################
|
|
# NATS-Bench (https://arxiv.org/pdf/2009.00437.pdf) #
|
|
# The code to draw Figure 2 / 3 / 4 / 5 in our paper. #
|
|
###############################################################
|
|
# Copyright (c) Xuanyi Dong [GitHub D-X-Y], 2020.06 #
|
|
###############################################################
|
|
# Usage: python exps/NATS-Bench/draw-fig2_5.py #
|
|
###############################################################
|
|
import os, sys, time, torch, argparse
|
|
import scipy
|
|
import numpy as np
|
|
from typing import List, Text, Dict, Any
|
|
from shutil import copyfile
|
|
from collections import defaultdict
|
|
from copy import deepcopy
|
|
from pathlib import Path
|
|
import matplotlib
|
|
import seaborn as sns
|
|
matplotlib.use('agg')
|
|
import matplotlib.pyplot as plt
|
|
import matplotlib.ticker as ticker
|
|
|
|
lib_dir = (Path(__file__).parent / '..' / '..' / 'lib').resolve()
|
|
if str(lib_dir) not in sys.path: sys.path.insert(0, str(lib_dir))
|
|
from config_utils import dict2config, load_config
|
|
from log_utils import time_string
|
|
from models import get_cell_based_tiny_net
|
|
from nats_bench import create
|
|
|
|
|
|
def visualize_relative_info(api, vis_save_dir, indicator):
|
|
vis_save_dir = vis_save_dir.resolve()
|
|
# print ('{:} start to visualize {:} information'.format(time_string(), api))
|
|
vis_save_dir.mkdir(parents=True, exist_ok=True)
|
|
|
|
cifar010_cache_path = vis_save_dir / '{:}-cache-{:}-info.pth'.format('cifar10', indicator)
|
|
cifar100_cache_path = vis_save_dir / '{:}-cache-{:}-info.pth'.format('cifar100', indicator)
|
|
imagenet_cache_path = vis_save_dir / '{:}-cache-{:}-info.pth'.format('ImageNet16-120', indicator)
|
|
cifar010_info = torch.load(cifar010_cache_path)
|
|
cifar100_info = torch.load(cifar100_cache_path)
|
|
imagenet_info = torch.load(imagenet_cache_path)
|
|
indexes = list(range(len(cifar010_info['params'])))
|
|
|
|
print ('{:} start to visualize relative ranking'.format(time_string()))
|
|
|
|
cifar010_ord_indexes = sorted(indexes, key=lambda i: cifar010_info['test_accs'][i])
|
|
cifar100_ord_indexes = sorted(indexes, key=lambda i: cifar100_info['test_accs'][i])
|
|
imagenet_ord_indexes = sorted(indexes, key=lambda i: imagenet_info['test_accs'][i])
|
|
|
|
cifar100_labels, imagenet_labels = [], []
|
|
for idx in cifar010_ord_indexes:
|
|
cifar100_labels.append( cifar100_ord_indexes.index(idx) )
|
|
imagenet_labels.append( imagenet_ord_indexes.index(idx) )
|
|
print ('{:} prepare data done.'.format(time_string()))
|
|
|
|
dpi, width, height = 200, 1400, 800
|
|
figsize = width / float(dpi), height / float(dpi)
|
|
LabelSize, LegendFontsize = 18, 12
|
|
resnet_scale, resnet_alpha = 120, 0.5
|
|
|
|
fig = plt.figure(figsize=figsize)
|
|
ax = fig.add_subplot(111)
|
|
plt.xlim(min(indexes), max(indexes))
|
|
plt.ylim(min(indexes), max(indexes))
|
|
# plt.ylabel('y').set_rotation(30)
|
|
plt.yticks(np.arange(min(indexes), max(indexes), max(indexes)//3), fontsize=LegendFontsize, rotation='vertical')
|
|
plt.xticks(np.arange(min(indexes), max(indexes), max(indexes)//5), fontsize=LegendFontsize)
|
|
ax.scatter(indexes, cifar100_labels, marker='^', s=0.5, c='tab:green', alpha=0.8)
|
|
ax.scatter(indexes, imagenet_labels, marker='*', s=0.5, c='tab:red' , alpha=0.8)
|
|
ax.scatter(indexes, indexes , marker='o', s=0.5, c='tab:blue' , alpha=0.8)
|
|
ax.scatter([-1], [-1], marker='o', s=100, c='tab:blue' , label='CIFAR-10')
|
|
ax.scatter([-1], [-1], marker='^', s=100, c='tab:green', label='CIFAR-100')
|
|
ax.scatter([-1], [-1], marker='*', s=100, c='tab:red' , label='ImageNet-16-120')
|
|
plt.grid(zorder=0)
|
|
ax.set_axisbelow(True)
|
|
plt.legend(loc=0, fontsize=LegendFontsize)
|
|
ax.set_xlabel('architecture ranking in CIFAR-10', fontsize=LabelSize)
|
|
ax.set_ylabel('architecture ranking', fontsize=LabelSize)
|
|
save_path = (vis_save_dir / '{:}-relative-rank.pdf'.format(indicator)).resolve()
|
|
fig.savefig(save_path, dpi=dpi, bbox_inches='tight', format='pdf')
|
|
save_path = (vis_save_dir / '{:}-relative-rank.png'.format(indicator)).resolve()
|
|
fig.savefig(save_path, dpi=dpi, bbox_inches='tight', format='png')
|
|
print ('{:} save into {:}'.format(time_string(), save_path))
|
|
|
|
|
|
def visualize_sss_info(api, dataset, vis_save_dir):
|
|
vis_save_dir = vis_save_dir.resolve()
|
|
print ('{:} start to visualize {:} information'.format(time_string(), dataset))
|
|
vis_save_dir.mkdir(parents=True, exist_ok=True)
|
|
cache_file_path = vis_save_dir / '{:}-cache-sss-info.pth'.format(dataset)
|
|
if not cache_file_path.exists():
|
|
print ('Do not find cache file : {:}'.format(cache_file_path))
|
|
params, flops, train_accs, valid_accs, test_accs = [], [], [], [], []
|
|
for index in range(len(api)):
|
|
cost_info = api.get_cost_info(index, dataset, hp='90')
|
|
params.append(cost_info['params'])
|
|
flops.append(cost_info['flops'])
|
|
# accuracy
|
|
info = api.get_more_info(index, dataset, hp='90', is_random=False)
|
|
train_accs.append(info['train-accuracy'])
|
|
test_accs.append(info['test-accuracy'])
|
|
if dataset == 'cifar10':
|
|
info = api.get_more_info(index, 'cifar10-valid', hp='90', is_random=False)
|
|
valid_accs.append(info['valid-accuracy'])
|
|
else:
|
|
valid_accs.append(info['valid-accuracy'])
|
|
info = {'params': params, 'flops': flops, 'train_accs': train_accs, 'valid_accs': valid_accs, 'test_accs': test_accs}
|
|
torch.save(info, cache_file_path)
|
|
else:
|
|
print ('Find cache file : {:}'.format(cache_file_path))
|
|
info = torch.load(cache_file_path)
|
|
params, flops, train_accs, valid_accs, test_accs = info['params'], info['flops'], info['train_accs'], info['valid_accs'], info['test_accs']
|
|
print ('{:} collect data done.'.format(time_string()))
|
|
|
|
# pyramid = ['8:16:32:48:64', '8:8:16:32:48', '8:8:16:16:32', '8:8:16:16:48', '8:8:16:16:64', '16:16:32:32:64', '32:32:64:64:64']
|
|
pyramid = ['8:16:24:32:40', '8:16:32:48:64', '32:40:48:56:64']
|
|
pyramid_indexes = [api.query_index_by_arch(x) for x in pyramid]
|
|
largest_indexes = [api.query_index_by_arch('64:64:64:64:64')]
|
|
|
|
indexes = list(range(len(params)))
|
|
dpi, width, height = 250, 8500, 1300
|
|
figsize = width / float(dpi), height / float(dpi)
|
|
LabelSize, LegendFontsize = 24, 24
|
|
# resnet_scale, resnet_alpha = 120, 0.5
|
|
xscale, xalpha = 120, 0.8
|
|
|
|
fig, axs = plt.subplots(1, 4, figsize=figsize)
|
|
# ax1, ax2, ax3, ax4, ax5 = axs
|
|
for ax in axs:
|
|
for tick in ax.xaxis.get_major_ticks():
|
|
tick.label.set_fontsize(LabelSize)
|
|
ax.yaxis.set_major_formatter(ticker.FormatStrFormatter('%.0f'))
|
|
for tick in ax.yaxis.get_major_ticks():
|
|
tick.label.set_fontsize(LabelSize)
|
|
ax1, ax2, ax3, ax4 = axs
|
|
|
|
ax1.scatter(params, train_accs, marker='o', s=0.5, c='tab:blue')
|
|
ax1.scatter([params[x] for x in pyramid_indexes], [train_accs[x] for x in pyramid_indexes], marker='*', s=xscale, c='tab:orange', label='Pyramid Structure', alpha=xalpha)
|
|
ax1.scatter([params[x] for x in largest_indexes], [train_accs[x] for x in largest_indexes], marker='x', s=xscale, c='tab:green', label='Largest Candidate', alpha=xalpha)
|
|
ax1.set_xlabel('#parameters (MB)', fontsize=LabelSize)
|
|
ax1.set_ylabel('train accuracy (%)', fontsize=LabelSize)
|
|
ax1.legend(loc=4, fontsize=LegendFontsize)
|
|
|
|
ax2.scatter(flops, train_accs, marker='o', s=0.5, c='tab:blue')
|
|
ax2.scatter([flops[x] for x in pyramid_indexes], [train_accs[x] for x in pyramid_indexes], marker='*', s=xscale, c='tab:orange', label='Pyramid Structure', alpha=xalpha)
|
|
ax2.scatter([flops[x] for x in largest_indexes], [train_accs[x] for x in largest_indexes], marker='x', s=xscale, c='tab:green', label='Largest Candidate', alpha=xalpha)
|
|
ax2.set_xlabel('#FLOPs (M)', fontsize=LabelSize)
|
|
# ax2.set_ylabel('train accuracy (%)', fontsize=LabelSize)
|
|
ax2.legend(loc=4, fontsize=LegendFontsize)
|
|
|
|
ax3.scatter(params, test_accs, marker='o', s=0.5, c='tab:blue')
|
|
ax3.scatter([params[x] for x in pyramid_indexes], [test_accs[x] for x in pyramid_indexes], marker='*', s=xscale, c='tab:orange', label='Pyramid Structure', alpha=xalpha)
|
|
ax3.scatter([params[x] for x in largest_indexes], [test_accs[x] for x in largest_indexes], marker='x', s=xscale, c='tab:green', label='Largest Candidate', alpha=xalpha)
|
|
ax3.set_xlabel('#parameters (MB)', fontsize=LabelSize)
|
|
ax3.set_ylabel('test accuracy (%)', fontsize=LabelSize)
|
|
ax3.legend(loc=4, fontsize=LegendFontsize)
|
|
|
|
ax4.scatter(flops, test_accs, marker='o', s=0.5, c='tab:blue')
|
|
ax4.scatter([flops[x] for x in pyramid_indexes], [test_accs[x] for x in pyramid_indexes], marker='*', s=xscale, c='tab:orange', label='Pyramid Structure', alpha=xalpha)
|
|
ax4.scatter([flops[x] for x in largest_indexes], [test_accs[x] for x in largest_indexes], marker='x', s=xscale, c='tab:green', label='Largest Candidate', alpha=xalpha)
|
|
ax4.set_xlabel('#FLOPs (M)', fontsize=LabelSize)
|
|
# ax4.set_ylabel('test accuracy (%)', fontsize=LabelSize)
|
|
ax4.legend(loc=4, fontsize=LegendFontsize)
|
|
|
|
save_path = vis_save_dir / 'sss-{:}.png'.format(dataset.lower())
|
|
fig.savefig(save_path, dpi=dpi, bbox_inches='tight', format='png')
|
|
print ('{:} save into {:}'.format(time_string(), save_path))
|
|
plt.close('all')
|
|
|
|
|
|
def visualize_tss_info(api, dataset, vis_save_dir):
|
|
vis_save_dir = vis_save_dir.resolve()
|
|
print ('{:} start to visualize {:} information'.format(time_string(), dataset))
|
|
vis_save_dir.mkdir(parents=True, exist_ok=True)
|
|
cache_file_path = vis_save_dir / '{:}-cache-tss-info.pth'.format(dataset)
|
|
if not cache_file_path.exists():
|
|
print ('Do not find cache file : {:}'.format(cache_file_path))
|
|
params, flops, train_accs, valid_accs, test_accs = [], [], [], [], []
|
|
for index in range(len(api)):
|
|
cost_info = api.get_cost_info(index, dataset, hp='12')
|
|
params.append(cost_info['params'])
|
|
flops.append(cost_info['flops'])
|
|
# accuracy
|
|
info = api.get_more_info(index, dataset, hp='200', is_random=False)
|
|
train_accs.append(info['train-accuracy'])
|
|
test_accs.append(info['test-accuracy'])
|
|
if dataset == 'cifar10':
|
|
info = api.get_more_info(index, 'cifar10-valid', hp='200', is_random=False)
|
|
valid_accs.append(info['valid-accuracy'])
|
|
else:
|
|
valid_accs.append(info['valid-accuracy'])
|
|
print('')
|
|
info = {'params': params, 'flops': flops, 'train_accs': train_accs, 'valid_accs': valid_accs, 'test_accs': test_accs}
|
|
torch.save(info, cache_file_path)
|
|
else:
|
|
print ('Find cache file : {:}'.format(cache_file_path))
|
|
info = torch.load(cache_file_path)
|
|
params, flops, train_accs, valid_accs, test_accs = info['params'], info['flops'], info['train_accs'], info['valid_accs'], info['test_accs']
|
|
print ('{:} collect data done.'.format(time_string()))
|
|
|
|
resnet = ['|nor_conv_3x3~0|+|none~0|nor_conv_3x3~1|+|skip_connect~0|none~1|skip_connect~2|']
|
|
resnet_indexes = [api.query_index_by_arch(x) for x in resnet]
|
|
largest_indexes = [api.query_index_by_arch('|nor_conv_3x3~0|+|nor_conv_3x3~0|nor_conv_3x3~1|+|nor_conv_3x3~0|nor_conv_3x3~1|nor_conv_3x3~2|')]
|
|
|
|
indexes = list(range(len(params)))
|
|
dpi, width, height = 250, 8500, 1300
|
|
figsize = width / float(dpi), height / float(dpi)
|
|
LabelSize, LegendFontsize = 24, 24
|
|
# resnet_scale, resnet_alpha = 120, 0.5
|
|
xscale, xalpha = 120, 0.8
|
|
|
|
fig, axs = plt.subplots(1, 4, figsize=figsize)
|
|
for ax in axs:
|
|
for tick in ax.xaxis.get_major_ticks():
|
|
tick.label.set_fontsize(LabelSize)
|
|
ax.yaxis.set_major_formatter(ticker.FormatStrFormatter('%.0f'))
|
|
for tick in ax.yaxis.get_major_ticks():
|
|
tick.label.set_fontsize(LabelSize)
|
|
ax1, ax2, ax3, ax4 = axs
|
|
|
|
ax1.scatter(params, train_accs, marker='o', s=0.5, c='tab:blue')
|
|
ax1.scatter([params[x] for x in resnet_indexes] , [train_accs[x] for x in resnet_indexes], marker='*', s=xscale, c='tab:orange', label='ResNet', alpha=xalpha)
|
|
ax1.scatter([params[x] for x in largest_indexes], [train_accs[x] for x in largest_indexes], marker='x', s=xscale, c='tab:green', label='Largest Candidate', alpha=xalpha)
|
|
ax1.set_xlabel('#parameters (MB)', fontsize=LabelSize)
|
|
ax1.set_ylabel('train accuracy (%)', fontsize=LabelSize)
|
|
ax1.legend(loc=4, fontsize=LegendFontsize)
|
|
|
|
ax2.scatter(flops, train_accs, marker='o', s=0.5, c='tab:blue')
|
|
ax2.scatter([flops[x] for x in resnet_indexes], [train_accs[x] for x in resnet_indexes], marker='*', s=xscale, c='tab:orange', label='ResNet', alpha=xalpha)
|
|
ax2.scatter([flops[x] for x in largest_indexes], [train_accs[x] for x in largest_indexes], marker='x', s=xscale, c='tab:green', label='Largest Candidate', alpha=xalpha)
|
|
ax2.set_xlabel('#FLOPs (M)', fontsize=LabelSize)
|
|
# ax2.set_ylabel('train accuracy (%)', fontsize=LabelSize)
|
|
ax2.legend(loc=4, fontsize=LegendFontsize)
|
|
|
|
ax3.scatter(params, test_accs, marker='o', s=0.5, c='tab:blue')
|
|
ax3.scatter([params[x] for x in resnet_indexes] , [test_accs[x] for x in resnet_indexes], marker='*', s=xscale, c='tab:orange', label='ResNet', alpha=xalpha)
|
|
ax3.scatter([params[x] for x in largest_indexes], [test_accs[x] for x in largest_indexes], marker='x', s=xscale, c='tab:green', label='Largest Candidate', alpha=xalpha)
|
|
ax3.set_xlabel('#parameters (MB)', fontsize=LabelSize)
|
|
ax3.set_ylabel('test accuracy (%)', fontsize=LabelSize)
|
|
ax3.legend(loc=4, fontsize=LegendFontsize)
|
|
|
|
ax4.scatter(flops, test_accs, marker='o', s=0.5, c='tab:blue')
|
|
ax4.scatter([flops[x] for x in resnet_indexes], [test_accs[x] for x in resnet_indexes], marker='*', s=xscale, c='tab:orange', label='ResNet', alpha=xalpha)
|
|
ax4.scatter([flops[x] for x in largest_indexes], [test_accs[x] for x in largest_indexes], marker='x', s=xscale, c='tab:green', label='Largest Candidate', alpha=xalpha)
|
|
ax4.set_xlabel('#FLOPs (M)', fontsize=LabelSize)
|
|
# ax4.set_ylabel('test accuracy (%)', fontsize=LabelSize)
|
|
ax4.legend(loc=4, fontsize=LegendFontsize)
|
|
|
|
save_path = vis_save_dir / 'tss-{:}.png'.format(dataset.lower())
|
|
fig.savefig(save_path, dpi=dpi, bbox_inches='tight', format='png')
|
|
print ('{:} save into {:}'.format(time_string(), save_path))
|
|
plt.close('all')
|
|
|
|
|
|
def visualize_rank_info(api, vis_save_dir, indicator):
|
|
vis_save_dir = vis_save_dir.resolve()
|
|
# print ('{:} start to visualize {:} information'.format(time_string(), api))
|
|
vis_save_dir.mkdir(parents=True, exist_ok=True)
|
|
|
|
cifar010_cache_path = vis_save_dir / '{:}-cache-{:}-info.pth'.format('cifar10', indicator)
|
|
cifar100_cache_path = vis_save_dir / '{:}-cache-{:}-info.pth'.format('cifar100', indicator)
|
|
imagenet_cache_path = vis_save_dir / '{:}-cache-{:}-info.pth'.format('ImageNet16-120', indicator)
|
|
cifar010_info = torch.load(cifar010_cache_path)
|
|
cifar100_info = torch.load(cifar100_cache_path)
|
|
imagenet_info = torch.load(imagenet_cache_path)
|
|
indexes = list(range(len(cifar010_info['params'])))
|
|
|
|
print ('{:} start to visualize relative ranking'.format(time_string()))
|
|
|
|
dpi, width, height = 250, 3800, 1200
|
|
figsize = width / float(dpi), height / float(dpi)
|
|
LabelSize, LegendFontsize = 14, 14
|
|
|
|
fig, axs = plt.subplots(1, 3, figsize=figsize)
|
|
ax1, ax2, ax3 = axs
|
|
|
|
def get_labels(info):
|
|
ord_test_indexes = sorted(indexes, key=lambda i: info['test_accs'][i])
|
|
ord_valid_indexes = sorted(indexes, key=lambda i: info['valid_accs'][i])
|
|
labels = []
|
|
for idx in ord_test_indexes:
|
|
labels.append(ord_valid_indexes.index(idx))
|
|
return labels
|
|
|
|
def plot_ax(labels, ax, name):
|
|
for tick in ax.xaxis.get_major_ticks():
|
|
tick.label.set_fontsize(LabelSize)
|
|
for tick in ax.yaxis.get_major_ticks():
|
|
tick.label.set_fontsize(LabelSize)
|
|
tick.label.set_rotation(90)
|
|
ax.set_xlim(min(indexes), max(indexes))
|
|
ax.set_ylim(min(indexes), max(indexes))
|
|
ax.yaxis.set_ticks(np.arange(min(indexes), max(indexes), max(indexes)//3))
|
|
ax.xaxis.set_ticks(np.arange(min(indexes), max(indexes), max(indexes)//5))
|
|
ax.scatter(indexes, labels , marker='^', s=0.5, c='tab:green', alpha=0.8)
|
|
ax.scatter(indexes, indexes, marker='o', s=0.5, c='tab:blue' , alpha=0.8)
|
|
ax.scatter([-1], [-1], marker='^', s=100, c='tab:green' , label='{:} test'.format(name))
|
|
ax.scatter([-1], [-1], marker='o', s=100, c='tab:blue' , label='{:} validation'.format(name))
|
|
ax.legend(loc=4, fontsize=LegendFontsize)
|
|
ax.set_xlabel('ranking on the {:} validation'.format(name), fontsize=LabelSize)
|
|
ax.set_ylabel('architecture ranking', fontsize=LabelSize)
|
|
labels = get_labels(cifar010_info)
|
|
plot_ax(labels, ax1, 'CIFAR-10')
|
|
labels = get_labels(cifar100_info)
|
|
plot_ax(labels, ax2, 'CIFAR-100')
|
|
labels = get_labels(imagenet_info)
|
|
plot_ax(labels, ax3, 'ImageNet-16-120')
|
|
|
|
save_path = (vis_save_dir / '{:}-same-relative-rank.pdf'.format(indicator)).resolve()
|
|
fig.savefig(save_path, dpi=dpi, bbox_inches='tight', format='pdf')
|
|
save_path = (vis_save_dir / '{:}-same-relative-rank.png'.format(indicator)).resolve()
|
|
fig.savefig(save_path, dpi=dpi, bbox_inches='tight', format='png')
|
|
print ('{:} save into {:}'.format(time_string(), save_path))
|
|
plt.close('all')
|
|
|
|
|
|
def compute_kendalltau(vectori, vectorj):
|
|
# indexes = list(range(len(vectori)))
|
|
# rank_1 = sorted(indexes, key=lambda i: vectori[i])
|
|
# rank_2 = sorted(indexes, key=lambda i: vectorj[i])
|
|
return scipy.stats.kendalltau(vectori, vectorj).correlation
|
|
|
|
|
|
def calculate_correlation(*vectors):
|
|
matrix = []
|
|
for i, vectori in enumerate(vectors):
|
|
x = []
|
|
for j, vectorj in enumerate(vectors):
|
|
# x.append(np.corrcoef(vectori, vectorj)[0,1])
|
|
x.append(compute_kendalltau(vectori, vectorj))
|
|
matrix.append( x )
|
|
return np.array(matrix)
|
|
|
|
|
|
def visualize_all_rank_info(api, vis_save_dir, indicator):
|
|
vis_save_dir = vis_save_dir.resolve()
|
|
# print ('{:} start to visualize {:} information'.format(time_string(), api))
|
|
vis_save_dir.mkdir(parents=True, exist_ok=True)
|
|
|
|
cifar010_cache_path = vis_save_dir / '{:}-cache-{:}-info.pth'.format('cifar10', indicator)
|
|
cifar100_cache_path = vis_save_dir / '{:}-cache-{:}-info.pth'.format('cifar100', indicator)
|
|
imagenet_cache_path = vis_save_dir / '{:}-cache-{:}-info.pth'.format('ImageNet16-120', indicator)
|
|
cifar010_info = torch.load(cifar010_cache_path)
|
|
cifar100_info = torch.load(cifar100_cache_path)
|
|
imagenet_info = torch.load(imagenet_cache_path)
|
|
indexes = list(range(len(cifar010_info['params'])))
|
|
|
|
print ('{:} start to visualize relative ranking'.format(time_string()))
|
|
|
|
|
|
dpi, width, height = 250, 3200, 1400
|
|
figsize = width / float(dpi), height / float(dpi)
|
|
LabelSize, LegendFontsize = 14, 14
|
|
|
|
fig, axs = plt.subplots(1, 2, figsize=figsize)
|
|
ax1, ax2 = axs
|
|
|
|
sns_size, xformat = 15, '.2f'
|
|
CoRelMatrix = calculate_correlation(cifar010_info['valid_accs'], cifar010_info['test_accs'], cifar100_info['valid_accs'], cifar100_info['test_accs'], imagenet_info['valid_accs'], imagenet_info['test_accs'])
|
|
|
|
sns.heatmap(CoRelMatrix, annot=True, annot_kws={'size':sns_size}, fmt=xformat, linewidths=0.5, ax=ax1,
|
|
xticklabels=['C10-V', 'C10-T', 'C100-V', 'C100-T', 'I120-V', 'I120-T'],
|
|
yticklabels=['C10-V', 'C10-T', 'C100-V', 'C100-T', 'I120-V', 'I120-T'])
|
|
|
|
selected_indexes, acc_bar = [], 92
|
|
for i, acc in enumerate(cifar010_info['test_accs']):
|
|
if acc > acc_bar: selected_indexes.append( i )
|
|
cifar010_valid_accs = np.array(cifar010_info['valid_accs'])[ selected_indexes ]
|
|
cifar010_test_accs = np.array(cifar010_info['test_accs']) [ selected_indexes ]
|
|
cifar100_valid_accs = np.array(cifar100_info['valid_accs'])[ selected_indexes ]
|
|
cifar100_test_accs = np.array(cifar100_info['test_accs']) [ selected_indexes ]
|
|
imagenet_valid_accs = np.array(imagenet_info['valid_accs'])[ selected_indexes ]
|
|
imagenet_test_accs = np.array(imagenet_info['test_accs']) [ selected_indexes ]
|
|
CoRelMatrix = calculate_correlation(cifar010_valid_accs, cifar010_test_accs, cifar100_valid_accs, cifar100_test_accs, imagenet_valid_accs, imagenet_test_accs)
|
|
|
|
sns.heatmap(CoRelMatrix, annot=True, annot_kws={'size':sns_size}, fmt=xformat, linewidths=0.5, ax=ax2,
|
|
xticklabels=['C10-V', 'C10-T', 'C100-V', 'C100-T', 'I120-V', 'I120-T'],
|
|
yticklabels=['C10-V', 'C10-T', 'C100-V', 'C100-T', 'I120-V', 'I120-T'])
|
|
ax1.set_title('Correlation coefficient over ALL candidates')
|
|
ax2.set_title('Correlation coefficient over candidates with accuracy > {:}%'.format(acc_bar))
|
|
save_path = (vis_save_dir / '{:}-all-relative-rank.png'.format(indicator)).resolve()
|
|
fig.savefig(save_path, dpi=dpi, bbox_inches='tight', format='png')
|
|
print ('{:} save into {:}'.format(time_string(), save_path))
|
|
plt.close('all')
|
|
|
|
|
|
if __name__ == '__main__':
|
|
parser = argparse.ArgumentParser(description='NATS-Bench', formatter_class=argparse.ArgumentDefaultsHelpFormatter)
|
|
parser.add_argument('--save_dir', type=str, default='output/vis-nas-bench', help='Folder to save checkpoints and log.')
|
|
# use for train the model
|
|
args = parser.parse_args()
|
|
|
|
to_save_dir = Path(args.save_dir)
|
|
|
|
datasets = ['cifar10', 'cifar100', 'ImageNet16-120']
|
|
# Figure 3 (a-c)
|
|
api_tss = create(None, 'tss', verbose=True)
|
|
for xdata in datasets:
|
|
visualize_tss_info(api_tss, xdata, to_save_dir)
|
|
# Figure 3 (d-f)
|
|
api_sss = create(None, 'size', verbose=True)
|
|
for xdata in datasets:
|
|
visualize_sss_info(api_sss, xdata, to_save_dir)
|
|
|
|
# Figure 2
|
|
visualize_relative_info(None, to_save_dir, 'tss')
|
|
visualize_relative_info(None, to_save_dir, 'sss')
|
|
|
|
# Figure 4
|
|
visualize_rank_info(None, to_save_dir, 'tss')
|
|
visualize_rank_info(None, to_save_dir, 'sss')
|
|
|
|
# Figure 5
|
|
visualize_all_rank_info(None, to_save_dir, 'tss')
|
|
visualize_all_rank_info(None, to_save_dir, 'sss')
|