377 lines
13 KiB
Python
377 lines
13 KiB
Python
#####################################################
|
|
# Learning to Generate Model One Step Ahead #
|
|
#####################################################
|
|
# python exps/GeMOSA/main.py --env_version v1 --workers 0
|
|
# python exps/GeMOSA/main.py --env_version v1 --device cuda --lr 0.002 --seq_length 8 --meta_batch 256
|
|
# python exps/GeMOSA/main.py --env_version v1 --device cuda --lr 0.002 --seq_length 24 --time_dim 32 --meta_batch 128
|
|
#####################################################
|
|
import sys, time, copy, torch, random, argparse
|
|
from tqdm import tqdm
|
|
from copy import deepcopy
|
|
from pathlib import Path
|
|
from torch.nn import functional as F
|
|
|
|
lib_dir = (Path(__file__).parent / ".." / "..").resolve()
|
|
print("LIB-DIR: {:}".format(lib_dir))
|
|
if str(lib_dir) not in sys.path:
|
|
sys.path.insert(0, str(lib_dir))
|
|
|
|
from xautodl.procedures import (
|
|
prepare_seed,
|
|
prepare_logger,
|
|
save_checkpoint,
|
|
copy_checkpoint,
|
|
)
|
|
from xautodl.log_utils import time_string
|
|
from xautodl.log_utils import AverageMeter, convert_secs2time
|
|
|
|
from xautodl.utils import split_str2indexes
|
|
|
|
from xautodl.procedures.advanced_main import basic_train_fn, basic_eval_fn
|
|
from xautodl.procedures.metric_utils import SaveMetric, MSEMetric, ComposeMetric
|
|
from xautodl.datasets.synthetic_core import get_synthetic_env
|
|
from xautodl.models.xcore import get_model
|
|
from xautodl.xlayers import super_core, trunc_normal_
|
|
|
|
from meta_model import MetaModelV1
|
|
|
|
|
|
def online_evaluate(
|
|
env, meta_model, base_model, criterion, args, logger, save=False, easy_adapt=False
|
|
):
|
|
logger.log("Online evaluate: {:}".format(env))
|
|
loss_meter = AverageMeter()
|
|
w_containers = dict()
|
|
for idx, (future_time, (future_x, future_y)) in enumerate(env):
|
|
with torch.no_grad():
|
|
meta_model.eval()
|
|
base_model.eval()
|
|
future_time_embed = meta_model.gen_time_embed(
|
|
future_time.to(args.device).view(-1)
|
|
)
|
|
[future_container] = meta_model.gen_model(future_time_embed)
|
|
if save:
|
|
w_containers[idx] = future_container.no_grad_clone()
|
|
future_x, future_y = future_x.to(args.device), future_y.to(args.device)
|
|
future_y_hat = base_model.forward_with_container(future_x, future_container)
|
|
future_loss = criterion(future_y_hat, future_y)
|
|
loss_meter.update(future_loss.item())
|
|
if easy_adapt:
|
|
meta_model.easy_adapt(future_time.item(), future_time_embed)
|
|
refine, post_refine_loss = False, -1
|
|
else:
|
|
refine, post_refine_loss = meta_model.adapt(
|
|
base_model,
|
|
criterion,
|
|
future_time.item(),
|
|
future_x,
|
|
future_y,
|
|
args.refine_lr,
|
|
args.refine_epochs,
|
|
{"param": future_time_embed, "loss": future_loss.item()},
|
|
)
|
|
logger.log(
|
|
"[ONLINE] [{:03d}/{:03d}] loss={:.4f}".format(
|
|
idx, len(env), future_loss.item()
|
|
)
|
|
+ ", post-loss={:.4f}".format(post_refine_loss if refine else -1)
|
|
)
|
|
meta_model.clear_fixed()
|
|
meta_model.clear_learnt()
|
|
return w_containers, loss_meter
|
|
|
|
|
|
def meta_train_procedure(base_model, meta_model, criterion, xenv, args, logger):
|
|
base_model.train()
|
|
meta_model.train()
|
|
optimizer = torch.optim.Adam(
|
|
meta_model.get_parameters(True, True, True),
|
|
lr=args.lr,
|
|
weight_decay=args.weight_decay,
|
|
amsgrad=True,
|
|
)
|
|
logger.log("Pre-train the meta-model")
|
|
logger.log("Using the optimizer: {:}".format(optimizer))
|
|
|
|
meta_model.set_best_dir(logger.path(None) / "ckps-pretrain-v2")
|
|
final_best_name = "final-pretrain-{:}.pth".format(args.rand_seed)
|
|
if meta_model.has_best(final_best_name):
|
|
meta_model.load_best(final_best_name)
|
|
logger.log("Directly load the best model from {:}".format(final_best_name))
|
|
return
|
|
|
|
total_indexes = list(range(meta_model.meta_length))
|
|
meta_model.set_best_name("pretrain-{:}.pth".format(args.rand_seed))
|
|
last_success_epoch, early_stop_thresh = 0, args.pretrain_early_stop_thresh
|
|
per_epoch_time, start_time = AverageMeter(), time.time()
|
|
device = args.device
|
|
for iepoch in range(args.epochs):
|
|
left_time = "Time Left: {:}".format(
|
|
convert_secs2time(per_epoch_time.avg * (args.epochs - iepoch), True)
|
|
)
|
|
optimizer.zero_grad()
|
|
|
|
generated_time_embeds = meta_model.gen_time_embed(meta_model.meta_timestamps)
|
|
|
|
batch_indexes = random.choices(total_indexes, k=args.meta_batch)
|
|
|
|
raw_time_steps = meta_model.meta_timestamps[batch_indexes]
|
|
|
|
regularization_loss = F.l1_loss(
|
|
generated_time_embeds, meta_model.super_meta_embed, reduction="mean"
|
|
)
|
|
# future loss
|
|
total_future_losses, total_present_losses = [], []
|
|
future_containers = meta_model.gen_model(generated_time_embeds[batch_indexes])
|
|
present_containers = meta_model.gen_model(
|
|
meta_model.super_meta_embed[batch_indexes]
|
|
)
|
|
for ibatch, time_step in enumerate(raw_time_steps.cpu().tolist()):
|
|
_, (inputs, targets) = xenv(time_step)
|
|
inputs, targets = inputs.to(device), targets.to(device)
|
|
|
|
predictions = base_model.forward_with_container(
|
|
inputs, future_containers[ibatch]
|
|
)
|
|
total_future_losses.append(criterion(predictions, targets))
|
|
|
|
predictions = base_model.forward_with_container(
|
|
inputs, present_containers[ibatch]
|
|
)
|
|
total_present_losses.append(criterion(predictions, targets))
|
|
|
|
with torch.no_grad():
|
|
meta_std = torch.stack(total_future_losses).std().item()
|
|
loss_future = torch.stack(total_future_losses).mean()
|
|
loss_present = torch.stack(total_present_losses).mean()
|
|
total_loss = loss_future + loss_present + regularization_loss
|
|
total_loss.backward()
|
|
optimizer.step()
|
|
# success
|
|
success, best_score = meta_model.save_best(-total_loss.item())
|
|
logger.log(
|
|
"{:} [META {:04d}/{:}] loss : {:.4f} +- {:.4f} = {:.4f} + {:.4f} + {:.4f}".format(
|
|
time_string(),
|
|
iepoch,
|
|
args.epochs,
|
|
total_loss.item(),
|
|
meta_std,
|
|
loss_future.item(),
|
|
loss_present.item(),
|
|
regularization_loss.item(),
|
|
)
|
|
+ ", batch={:}".format(len(total_future_losses))
|
|
+ ", success={:}, best={:.4f}".format(success, -best_score)
|
|
+ ", LS={:}/{:}".format(iepoch - last_success_epoch, early_stop_thresh)
|
|
+ ", {:}".format(left_time)
|
|
)
|
|
if success:
|
|
last_success_epoch = iepoch
|
|
if iepoch - last_success_epoch >= early_stop_thresh:
|
|
logger.log("Early stop the pre-training at {:}".format(iepoch))
|
|
break
|
|
per_epoch_time.update(time.time() - start_time)
|
|
start_time = time.time()
|
|
meta_model.load_best()
|
|
# save to the final model
|
|
meta_model.set_best_name(final_best_name)
|
|
success, _ = meta_model.save_best(best_score + 1e-6)
|
|
assert success
|
|
logger.log("Save the best model into {:}".format(final_best_name))
|
|
|
|
|
|
def main(args):
|
|
prepare_seed(args.rand_seed)
|
|
logger = prepare_logger(args)
|
|
train_env = get_synthetic_env(mode="train", version=args.env_version)
|
|
valid_env = get_synthetic_env(mode="valid", version=args.env_version)
|
|
trainval_env = get_synthetic_env(mode="trainval", version=args.env_version)
|
|
all_env = get_synthetic_env(mode=None, version=args.env_version)
|
|
logger.log("The training enviornment: {:}".format(train_env))
|
|
logger.log("The validation enviornment: {:}".format(valid_env))
|
|
logger.log("The trainval enviornment: {:}".format(trainval_env))
|
|
logger.log("The total enviornment: {:}".format(all_env))
|
|
model_kwargs = dict(
|
|
config=dict(model_type="norm_mlp"),
|
|
input_dim=all_env.meta_info["input_dim"],
|
|
output_dim=all_env.meta_info["output_dim"],
|
|
hidden_dims=[args.hidden_dim] * 2,
|
|
act_cls="relu",
|
|
norm_cls="layer_norm_1d",
|
|
)
|
|
|
|
base_model = get_model(**model_kwargs)
|
|
base_model = base_model.to(args.device)
|
|
criterion = torch.nn.MSELoss()
|
|
|
|
shape_container = base_model.get_w_container().to_shape_container()
|
|
|
|
# pre-train the hypernetwork
|
|
timestamps = trainval_env.get_timestamp(None)
|
|
meta_model = MetaModelV1(
|
|
shape_container,
|
|
args.layer_dim,
|
|
args.time_dim,
|
|
timestamps,
|
|
seq_length=args.seq_length,
|
|
interval=trainval_env.time_interval,
|
|
)
|
|
meta_model = meta_model.to(args.device)
|
|
|
|
logger.log("The base-model has {:} weights.".format(base_model.numel()))
|
|
logger.log("The meta-model has {:} weights.".format(meta_model.numel()))
|
|
logger.log("The base-model is\n{:}".format(base_model))
|
|
logger.log("The meta-model is\n{:}".format(meta_model))
|
|
|
|
meta_train_procedure(base_model, meta_model, criterion, trainval_env, args, logger)
|
|
|
|
# try to evaluate once
|
|
# online_evaluate(train_env, meta_model, base_model, criterion, args, logger)
|
|
# online_evaluate(valid_env, meta_model, base_model, criterion, args, logger)
|
|
"""
|
|
w_containers, loss_meter = online_evaluate(
|
|
all_env, meta_model, base_model, criterion, args, logger, True
|
|
)
|
|
logger.log("In this enviornment, the total loss-meter is {:}".format(loss_meter))
|
|
"""
|
|
_, test_loss_meter_adapt_v1 = online_evaluate(
|
|
valid_env, meta_model, base_model, criterion, args, logger, False, False
|
|
)
|
|
_, test_loss_meter_adapt_v2 = online_evaluate(
|
|
valid_env, meta_model, base_model, criterion, args, logger, False, True
|
|
)
|
|
logger.log(
|
|
"In the online test enviornment, the total loss for refine-adapt is {:}".format(
|
|
test_loss_meter_adapt_v1
|
|
)
|
|
)
|
|
logger.log(
|
|
"In the online test enviornment, the total loss for easy-adapt is {:}".format(
|
|
test_loss_meter_adapt_v2
|
|
)
|
|
)
|
|
|
|
save_checkpoint(
|
|
{
|
|
"test_loss_adapt_v1": test_loss_meter_adapt_v1.avg,
|
|
"test_loss_adapt_v2": test_loss_meter_adapt_v2.avg,
|
|
},
|
|
logger.path(None) / "final-ckp-{:}.pth".format(args.rand_seed),
|
|
logger,
|
|
)
|
|
|
|
logger.log("-" * 200 + "\n")
|
|
logger.close()
|
|
|
|
|
|
if __name__ == "__main__":
|
|
parser = argparse.ArgumentParser(".")
|
|
parser.add_argument(
|
|
"--save_dir",
|
|
type=str,
|
|
default="./outputs/lfna-synthetic/lfna-battle",
|
|
help="The checkpoint directory.",
|
|
)
|
|
parser.add_argument(
|
|
"--env_version",
|
|
type=str,
|
|
required=True,
|
|
help="The synthetic enviornment version.",
|
|
)
|
|
parser.add_argument(
|
|
"--hidden_dim",
|
|
type=int,
|
|
default=16,
|
|
help="The hidden dimension.",
|
|
)
|
|
parser.add_argument(
|
|
"--layer_dim",
|
|
type=int,
|
|
default=16,
|
|
help="The layer chunk dimension.",
|
|
)
|
|
parser.add_argument(
|
|
"--time_dim",
|
|
type=int,
|
|
default=16,
|
|
help="The timestamp dimension.",
|
|
)
|
|
#####
|
|
parser.add_argument(
|
|
"--lr",
|
|
type=float,
|
|
default=0.002,
|
|
help="The initial learning rate for the optimizer (default is Adam)",
|
|
)
|
|
parser.add_argument(
|
|
"--weight_decay",
|
|
type=float,
|
|
default=0.00001,
|
|
help="The weight decay for the optimizer (default is Adam)",
|
|
)
|
|
parser.add_argument(
|
|
"--meta_batch",
|
|
type=int,
|
|
default=64,
|
|
help="The batch size for the meta-model",
|
|
)
|
|
parser.add_argument(
|
|
"--sampler_enlarge",
|
|
type=int,
|
|
default=5,
|
|
help="Enlarge the #iterations for an epoch",
|
|
)
|
|
parser.add_argument("--epochs", type=int, default=10000, help="The total #epochs.")
|
|
parser.add_argument(
|
|
"--refine_lr",
|
|
type=float,
|
|
default=0.001,
|
|
help="The learning rate for the optimizer, during refine",
|
|
)
|
|
parser.add_argument(
|
|
"--refine_epochs", type=int, default=150, help="The final refine #epochs."
|
|
)
|
|
parser.add_argument(
|
|
"--early_stop_thresh",
|
|
type=int,
|
|
default=20,
|
|
help="The #epochs for early stop.",
|
|
)
|
|
parser.add_argument(
|
|
"--pretrain_early_stop_thresh",
|
|
type=int,
|
|
default=300,
|
|
help="The #epochs for early stop.",
|
|
)
|
|
parser.add_argument(
|
|
"--seq_length", type=int, default=10, help="The sequence length."
|
|
)
|
|
parser.add_argument(
|
|
"--workers", type=int, default=4, help="The number of workers in parallel."
|
|
)
|
|
parser.add_argument(
|
|
"--device",
|
|
type=str,
|
|
default="cpu",
|
|
help="",
|
|
)
|
|
# Random Seed
|
|
parser.add_argument("--rand_seed", type=int, default=-1, help="manual seed")
|
|
args = parser.parse_args()
|
|
if args.rand_seed is None or args.rand_seed < 0:
|
|
args.rand_seed = random.randint(1, 100000)
|
|
assert args.save_dir is not None, "The save dir argument can not be None"
|
|
args.save_dir = "{:}-bs{:}-d{:}_{:}_{:}-s{:}-lr{:}-wd{:}-e{:}-env{:}".format(
|
|
args.save_dir,
|
|
args.meta_batch,
|
|
args.hidden_dim,
|
|
args.layer_dim,
|
|
args.time_dim,
|
|
args.seq_length,
|
|
args.lr,
|
|
args.weight_decay,
|
|
args.epochs,
|
|
args.env_version,
|
|
)
|
|
main(args)
|